Nuclear migration behavior of Coprinopsis cinerea, during the monokaryotic mating and the relationship between the clamp cell number and fruiting body formation

Authors

  • Prayook Srivilai Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150
  • Ananyaphon Prommetta Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150
  • Panida Loutchanwoot Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150

DOI:

https://doi.org/10.14456/tjg.2012.7

Keywords:

Coprinopsis cinerea, nuclear migration, clamp cell, DAPI, fruiting body formation

Abstract

Coprinopsis cinerea is a model mushroom used for studying the growth, development, fruiting body formation and genetic systems of the basidiomycetous mushrooms. This research aimed to study the nuclear migration behavior during the monokaryotic mating of 9 strains of C. cinerea namely PS001, PS002, PS001-1, PS002-1, 218, AT8, Uv-6031, MK54 and Okayama7. The results revealed that there are three patterns of nuclear migration, nuclear donor, nuclear recipient and both nuclear donor and recipient. The behavior of nuclear donor or recipient of each C. cinerea strain was varied depending upon the mating partners and the B mating type gene exerted clear effects on nuclear migration. During the monokaryotic mating, the positions of nuclei in the hypha were located and distinguished by staining with the fluorogenic dye 4¢,6-Diamidino-2-phenylindole dihydrochloride (DAPI) and the results showed that the nuclear positions within the hypha varied in each C. cinerea strain. Moreover, at least two types of hyphal fusion were observed, the hyphal tip fusion and lateral fusion. This study also found that the numbers of clamp cells was not correlated with the numbers of fruiting bodies. In addition, the


dikaryons obtained from the monokaryotic matings resulted in the higher number of fruiting bodies than those of the homokaryon AmutBmut.

References

ประยุกต์ ศรีวิไล และพนิดา เล้าชาญวุฒิ. 2552. การเปรียบเทียบลักษณะทางพันธุกรรมระหว่างรุ่นพ่อแม่และรุ่นลูกที่เกิดจากการผสมพันธุ์ซ้ำแบบย้อนกลับของเห็ดชั้นสูง Coprinopsis cinerea. วารสารวิทยาศาสตร์และเทคโนโลยีมหาวิทยาลัยมหาสารคาม. 28: 88–97.

อนัญพร พรหมเมตา ไพโรจน์ ประมวล และประยุกต์ ศรีวิไล. 2554. ลักษณะทางชีววิทยาและเบื้องหลังพันธุกรรมของเห็ดที่มีฤทธิ์ทางยา Cambodian Phellinus igniarius เปรียบเทียบกับเห็ดเบสิดิโอไมซิติสชนิดอื่น. วารสารวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยมหาสารคาม. (ฉบับพิเศษ): 100–115.

Asante-Owusu, R.N., Banham, A.H., BÖhnert, H.U., Mellor, E.J.C. and Casselton, L.A. 1996. Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains. Gene 172: 25–31.

Badalyan, S.M., Polak, E., Aebi, M. and Kües, U. 2004. Role of peg formation in clamp cell fusion of homobasidiomycete fungi. J Basic Microbiol 44: 167–177.

Bharathan, G., Janssen, B.J., Kellog, A. and Sinha, N. 1997. Did homeodomain protein duplicate before the origin of agiosperms, fungi and metazoan. Proc Natl Acad Sci USA 94: 13749–13753.

Casselton, L.A. 1998. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics 148: 1081–1090.

Casselton, L.A. and Economou, A. 1985. Dikaryon formation. In: Moor, D. Casselton, L.A. Wood D.A. Frankland, J.C. (eds), Developmental Biology of Higher Fungi. Cambridge University Press, p. 213–299.

Casselton, L.A. and Olesnicky, N.S. 1998. Molecular genetics of mating recognition in basidiomycete fungi. Mol Biol Rev 62: 55–70.

Elliott C.G. 1994. Reproduction in Fungi: Genetical and Physiological Aspects. Chapman Hall.

Giesy, R.M. and Day, P. 1965. The septal pores of Coprinus lagopus in relation to nuclear migration. Am J Bot 52: 287–293.

Halsall, J.R., Milner, M.J. and Casselton L.A. 2000. Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus. Genetics 154: 1115–1123.

Hamada, S. and Fujita, S.1983. DAPI staining improved for quantitative cytofiluorometry. Histochem Cell Biol 70: 219–266.

Harder, C.B. and Annen, D.K. 2009. Unilateral nuclear migration in basidiomycetes:pheromone interaction, genomic conflicts and mating system reversion. Fungal Biol Rev 23: 48–58.

Hurst, L.D. and Hamilton, W.D.1992. Cytoplasmic fusion and the nature of sexes. Proc R Soc Lond Series B-Biol Sci 247: 189–194.

James, T.Y., Srivilai, P., Kües, U. and Vilgalys, R. 2006. Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 3: 1877–1891.

Kamada, T. 2002. Molecular genetics of sexual development in the mushroom Coprinus cinereus. Bioessays 24: 449–459.

Kertesz-Chaloupkovà, K., Walser, P.J., Granado, J.D., Aebi. M and Kües U. 1998. Blue light overrides repression of asexual sporulation by mating type genes in the basidiomycete Coprinus cinereus. Fungal Genet Biol 23: 95–109.

Koltin, Y., and Flexer, A.S. 1969. Alteration of nuclear distribution in B mutant strains of Schizophyllum commune. J Cell Sci 4: 739–747.

Kües, U. 2000. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiolol Mol Biol Rev 4: 316–353.

Kües, U., Walser, P.J., Klaus, M.J. and Aebi, M. 2002. Influence of activated A and B mating type pathways on developmental processes in the basidiomycete Coprinus cinereus. Mol Gen Genom 268: 262–271.

Kües, U. 1994. Two classes of homeodomain protein specify the multiple A mating of the mushroom Coprinus cinereus. Plant cell 6: 1467–1475.

Kües, U. and Casselton, L.A. 1992. Homeodomains and regulation of sexual development in basidiomycetes. Trends Genet 8: 154–155.

Kües, U., GÖttgens, B., Stratmann, R., Richardson, W.V.J., O’Shea S.F. and Casselton, L.A. 1994. A chimeric homeodomain protein causes selfcompatibility and constitutive sexual development in the mushroom Coprinus cinereus. EMBO J 13: 4054–4059.

Larraya, L.M., Perez G., Iribarren, I., Blanco, J.A., Alfonso, M., Pisabarro, A.G. and Ramirez, L. 2001 Relationship between monokaryotic growth rate and mating type in the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 67: 3385–3390.

O’Shea, S.F., Chaure, P.T.J., Halsall, R., Olesnicky, N.S., Leibbrant, A., Connerton, I.F. and Casselton L.A. 1998. A large pheromone and receptor gene complex determines multiple B mating specificities in Coprinus cinereus. Genetics 148: 1081–1090.

Pardo, E.H., O'Shea, S.F. and Casselton, L.A. 1996. Multiple versions of the A mating type locus of Coprinus cinereus are generated by three paralogous pairs of multiallelic homeobox genes. Genetics 144: 87–94.

Redhead, S.A., Vilgalys, R., Moncalvo, J.M., Johnson, J and Hopple, J.S. 2001. Coprinus Pers. and the disposition of Coprinus species sensu lato. Taxon 50: 203–241.

Schubert, D., Raudaskoski, M., Knabe, N. and Kothe, E. 2006. Ras GTPase-activating protein Gap1 of the homobasidiomycete Schizophyllum commune regulates hyphal growth orientation and sexual development. Eukaryot Cell 5: 683–695.

Spit, A., Hyland, R.H., Mellor, E.C.J. and Casselton, L.A. 1998. A role for heterodimerization in nuclear localisation of a homeodomain protein. Proc Natl Acad Sci USA 95: 6228–6233.

Srivilai, P. 2006. Molecular analysis genes acting in Basidiomyceies (Ph.D thesis) Faculty of Forest Botany. University of Goettingen, Germany.

Srivilai, P., Loutchanwoot, P. and Sukha, J. 2009. Blue light signaling inactivates the mating type genes-mediated repression of asexual spore production in the higher basidiomycete Coprinopsis cinerea. Pak J Biol Sci 12: 110–118.

Srivilai, P. and Loutchanwoot, P. 2009. Coprinopsis cinerea as a model fungus to evaluate genes underlying sexual development in basidiomycetes. Pak J Biol Sci 12: 821–835.

Swamy, S., Uno, I. and Ishikawa, T. 1984. Morphogenetic effects of mutations at the A and B incompatibility factors of Coprinus cinereus. J Gen Microbiol 130: 3219–3224.

Suzanne, F. 1998. A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics 148: 1081–1090.

Downloads

Issue

Section

Research Articles