ประโยชน์ของพันธุวิศวกรรมในทางการแพทย์ (Applications of genetic engineering in medicine)

Authors

  • ภัทรา ยี่ทอง Patra Yeetong Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330
  • รัชนีกร ธรรมโชติ Rachaneekorn Tammachote Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330

DOI:

https://doi.org/10.14456/tjg.2015.9

Keywords:

พันธุวิศวกรรม (genetic engineering), การแพทย์ (medicine), ยีนบำบัด (gene therapy)

Abstract

Genetic engineering is a process involving modification of genetic material in different organisms to have the desired characteristics. Genetic engineering is an approach to produce several medical substances that are widely used, such as hormones, vaccines, antibodies and antibiotics, by improving the efficiency and lowering the cost. Moreover, genetic engineering is also used to generate animal models to study human genetic disease. This technique is also used in gene therapy, which is approved to treat single-gene diseases that are severe and have no other means of treatment, such as immune deficiency, hemophilia and thalassemia. Up to now, there have been more than 2,000 gene therapy studies in 36 countries. With the rapid progress of genetic technology in the past decade, it is highly possible that genetic engineering will be an important part in diagnosis, prevention and treatment of various diseases, which will be beneficial in improving quality of life of people.

พันธุวิศวกรรม หรือ เทคโนโลยีรีคอมบิแนนท์ดีเอ็นเอ เป็นกระบวนการที่เกี่ยวข้องกับการดัดแปลงสารพันธุกรรมของสิ่งมีชีวิตชนิดต่าง ๆ เพื่อให้มีคุณสมบัติดังที่ต้องการ พันธุวิศวกรรมเป็นวิธีการหนึ่งในการผลิตยาหลายชนิดที่ใช้อย่างแพร่หลายในปัจจุบัน เช่น ฮอร์โมน วัคซีน แอนติบอดี และยาปฏิชีวนะหลากหลายชนิด โดยทำให้ได้ยาที่มีประสิทธิภาพดีขึ้น และมีราคาต่ำลง นอกจากนี้ ยังมีการใช้พันธุวิศวกรรมในการสร้างแบบจำลองในสัตว์ทดลองเพื่อศึกษาโรคทางพันธุกรรมของมนุษย์ และเป็นขั้นตอนสำคัญของการทำยีนบำบัด ซึ่งเริ่มมีการใช้บำบัดรักษาโรค และได้รับการยอมรับในโรคบางชนิด โดยมีจุดมุ่งหมายเพื่อรักษาโรคทางพันธุกรรมมีการถ่ายทอดทางพันธุกรรมแบบยีนเดี่ยว ชนิดรุนแรงที่ปัจจุบันยังไม่มีทางรักษา เช่น โรคภูมิคุ้มกันบกพร่อง ฮีโมฟีเลีย ธาลัสซีเมีย จนถึงปัจจุบันมีการทำยีนบำบัดมากกว่า 2000 การศึกษาทั่วโลกใน 36 ประเทศ ด้วยเทคโนโลยีทางพันธุศาสตร์ที่ก้าวหน้าขึ้นอย่างรวดเร็วในทศวรรษที่ผ่านมา จึงมีความเป็นไปได้อย่างยิ่งที่พันธุวิศวกรรมจะเป็นส่วนสำคัญในการวินิจฉัย ป้องกัน และรักษาโรคต่าง ๆ ซึ่งจะเป็นประโยชน์ในการพัฒนาคุณภาพชีวิตของประชากรทั่วโลกได้

Author Biographies

ภัทรา ยี่ทอง Patra Yeetong, Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330

Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330

รัชนีกร ธรรมโชติ Rachaneekorn Tammachote, Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330

Human Genetics Research Group, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330

References

Adachi Y, Yoshio-Hoshino N, Nishimoto N (2008) Gene therapy for multiple myeloma. Curr Gene Ther 8: 247–255.

Adrio JL, Demain AL (2010) Recombinant organisms for production of industrial products. Bioeng Bugs 1: 116–131.

Aiuti A, Cattaneo F, Galimberti S, Benninghoff U, Cassani B, Callegaro L, Scaramuzza S, Andolfi G, Mirolo M, Brigida I, et al. (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360: 447–458.

Andries K, Verhasselt P, Guillemont J, Gohlmann HW,

Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, et al. (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307: 223–227.

Baum BJ (2014) Gene therapy. Oral Dis 20: 115–118.

Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28: 237–259.

Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, et al. (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373–376.

Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Diez IA, Dewey RA, Bohm M, Nowrouzi A, Ball CR, Glimm H, et al. (2010) Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med 363: 1918–1927.

Caplen NJ, Alton EW, Middleton PG, Dorin JR, Stevenson BJ, Gao X, Durham SR, Jeffery PK, Hodson ME, Coutelle C, et al. (1995) Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med 1: 39–46.

Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, et al. (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288: 669–672.

Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brad T, Westerman K, et al. (2010) Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature 467: 318–322.

Colluru VT, Johnson LE, Olson BM, McNeel DG (2013) Preclinical and clinical development of DNA vaccines for prostate cancer. Urol Oncol. (in press).

de Souza MS, Ratto-Kim S, Chuenarom W, Schuetz A, Chantakulkij S, Nuntapinit B, Valencia-Micolta A, Thelian D, Nitayaphan S, Pitisuttithum P, et al. (2012) The Thai phase III trial (RV144) vaccine regimen induces T cell responses that preferentially target epitopes within the V2 region of HIV-1 envelope. J Immunol 188: 5166–5176.

Diez B, Mellado E, Rodriguez M, Fouces R, Barredo JL (1997) Recombinant microorganisms for industrial production of antibiotics. Biotechnol Bioeng 55: 216–226.

Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

Eyre DW, Babakhani F, Griffiths D, Seddon J, Del Ojo Elias C, Gorbach SL, Peto TE, Crook DW, Walker AS (2014) Whole-genome sequencing demonstrates that fidaxomicin is superior to vancomycin for preventing reinfection and relapse of infection with Clostridium difficile. J Infect Dis 209: 1446–1451.

Fearon ER (1991) A genetic basis for the multi-step pathway of colorectal tumorigenesis. Princess Takamatsu Symp 22: 37–48.

Gaspar HB, Aiuti A, Porta F, Candotti F, Hershfield MS, Notarangelo LD (2009) How I treat ADA deficiency. Blood 114: 3524–3532.

Germanier R, Fuer E (1975) Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J Infect Dis 131: 553–558.

Goldenberg MM (1999) Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21: 309–318.

Grossbard EB (1987) Recombinant tissue plasminogen activator: a brief review. Pharm Res 4: 375-378.

Hacein-Bey-Abina S, Hauer J, Lim A, Picard C, Wang GP, Berry CC, Martinache C, Rieux-Laucat F, Latour S, Belohradsky BH, et al. (2010) Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 363: 355–364.

Heller LC, Heller R (2010) Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther 10: 312–317.

Huang CJ, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39: 383–399.

Huang S, Kamihira M (2013) Development of hybrid viral vectors for gene therapy. Biotechnol Adv 31: 208–223.

Jaski BE, Jessup ML, Mancini DM, Cappola TP, Pauly DF, Greenberg B, Borow K, Dittrich H, Zsebo KM, Hajjar RJ (2009) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 15: 171–181.

Johansson BE, Bucher DJ, Kilbourne ED (1989) Purified influenza virus hemagglutinin and neuraminidase are equivalent in stimulation of antibody response but induce contrasting types of immunity to infection. J Virol 63: 1239–1246.

Johnson IS (1983) Human insulin from recombinant DNA technology. Science 219: 632–637.

Kim JH, Excler JL, Michael NL (2015) Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med 66: 423–437.

Kiss Z, Elliott S, Jedynasty K, Tesar V, Szegedi J (2010) Discovery and basic pharmacology of erythropoiesis-stimulating agents (ESAs), including the hyperglycosylated ESA, darbepoetin alfa: an update of the rationale and clinical impact. Eur J Clin Pharmacol 66: 331–340.

Koser CU, Ellington MJ, Peacock, SJ (2014) Whole-genome sequencing to control antimicrobial resistance. Trends Genet 30: 401–407.

Kucera ML, Graham JP (1998) Insulin lispro, a new

insulin analog. Pharmacotherapy 18: 526–538.

Lakshminarayanan A, Ravi VK, Tatineni R, Rajesh YB, Maingi V, Vasu KS, Madhusudhan N, Maiti PK, Sood AK, Das S, et al. (2013) Efficient dendrimer-DNA complexation and gene delivery vector properties of nitrogen-core poly(propyl ether imine) dendrimer in mammalian cells. Bioconjug Chem 24: 1612–1623.

Levine MM, Kaper JB, Herrington D, Ketley J, Losonsky G, Tacket CO, Tall B, Cryz S (1988) Safety, immunogenicity, and efficacy of recombinant live oral cholera vaccines, CVD 103 and CVD 103-HgR. Lancet 2: 467–470.

Liang HD, Tang J, Halliwell M (2010) Sonoporation, drug delivery, and gene therapy. Proc Inst Mech Eng H 224: 343–361.

MacLaren RE, Groppe M, Barnard AR, Cottriall CL, Tolmachova T, Seymour L, Clark KR, During MJ, Cremers FP, Black GC, et al. (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383: 1129–1137.

Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, Ying GS, Rossi S, et al. (2009) Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374: 1597–1605.

Maicas S, Moukadiri I, Nieto A, Valentin E (2013) Construction of an expression vector for production and purification of human somatostatin in Escherichia coli. Mol Biotechnol 55: 150–158.

Marshall E (1999) Gene therapy death prompts review of adenovirus vector. Science 286: 2244–2245.

Mavilio F, Ferrari G (2008) Genetic modification of somatic stem cells. The progress, problems and prospects of a new therapeutic technology. EMBO Rep 9 Suppl 1: S64–69.

Medema MH, Alam MT, Breitling R, Takano E (2011)

The future of industrial antibiotic production: from random mutagenesis to synthetic biology. Bioeng Bugs 2: 230–233.

Mullighan CG (2012) The molecular genetic makeup of acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2012: 389–396.

Nascimento IP, Leite LC (2012) Recombinant vaccines and the development of new vaccine strategies. Braz J Med Biol Res 45: 1102–1111.

Nestorovich EM, Bezrukov SM (2014) Designing inhibitors of anthrax toxin. Expert Opin Drug Discov 9: 299–318.

Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9: 1647–1652.

O'Connor DM, Boulis NM (2015) Gene therapy for neurodegenerative diseases. Trends Mol Med 21: 504–512.

Peng Z (2005) Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 16: 1016–1027.

Plotkin S (2014) History of vaccination. Proc Natl Acad Sci U S A 111: 12283–12287.

Resnik DB, Langer, PJ (2001) Human germline gene therapy reconsidered. Hum Gene Ther 12: 1449–1458.

Romano G, Pacilio C, Giordano A (1999) Gene transfer technology in therapy: current applications and future goals. Stem Cells 17: 191–202.

Senerovic L, Stankovic N, Spizzo P, Basso A, Gardossi L, Vasiljevic B, Ljubijankic G, Tisminetzky S, Degrassi G (2006) High-level production and covalent immobilization of Providencia rettgeri penicillin G acylase (PAC) from recombinant Pichia pastoris for the development of a novel and stable biocatalyst of industrial applicability. Biotechnol Bioeng 93: 344–354.

Sibbald B (2001) Death but one unintended consequence of gene-therapy trial. Can Med Assoc J 164: 1612.

Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO,

Rosales-Mendoza S (2015) An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J Biomed Inform 53: 405–414.

Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB (2012) Precision editing of large animal genomes. Adv Genet 80: 37–97.

Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, et al. (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370: 901–910.

Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4: 346–358.

Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6: 909–923.

Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD (1982) Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298: 347–350.

Volpers C, Kochanek S (2004) Adenoviral vectors for gene transfer and therapy. J Gene Med 6 Suppl 1: S164–171.

Walther W, Stein U (2000) Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60: 249–271.

Wirth T, Samaranayake H, Pikkarainen J, Maatta AM, Yla-Herttuala S (2009) Clinical trials for glioblastoma multiforme using adenoviral vectors. Curr Opin Mol Ther 11: 485–492.

Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247: 1465–1468.

Yla-Herttuala S (2012) Endgame: glybera finally recommended for approval as the first gene therapy drug in the European union. Mol Ther 20: 1831–1832.

Gene Therapy Clinical Trials Worldwide, http:// www.

abedia.com/wiley/index.html (February 2015).

US Food Drug Administration, http://www.fda.gov/

NewsEvents/Newsroom/PressAnnouncements/ucm335891.htm (February 2015).

Downloads

Additional Files

Published

2015-09-21

Issue

Section

Review Articles