วิศวกรรมเมแทบอลิคในวิถีชิคิเมตกับการสร้างสารเมแทบอไลต์ทุติยภูมิ (Metabolic engineering in the shikimate pathway and secondary metabolites production)

Authors

  • วิภาวรรณ วิทยกฤตศิริกุล Vipawan Vitayakritsirikul Department of Genetics, Faculty of Science, Kasetsart University
  • อรินทิพย์ ธรรมชัยพิเนต Arinthip Thamchaipinet

Keywords:

วิถีชิคิเมต (shikimate pathway), วิศวกรรมเมแทบอลิค (metabolic engineering)

Abstract

Chorismic acid, an end product of the shikimate pathway, is a precursor for the production of essential amino acids and secondary metabolites such as folate, ubiquinone, coenzyme Q10 and antibiotics. Intermediates of this pathway such as shikimic acid was used as a precursor for the production of neuraminidase inhibitor for treatment of influenza. Thus, this paper summarized or reviewed the research studies of metabolic engineering in shikimate pathway of bacteria to improve the accumulation of important intermediates or by product such as chloramphenicol. Furthermore, the study of enzymes in the shikimate pathway were reviewed as potential drug targets for antipathogenic bacteria.

บทคัดย่อ

            วิถีชิคิเมต (shikimate pathway) เป็นวิถีที่สังเคราะห์กรดคลอริสมิค (chorismic acid) เพื่อเป็นสารตั้งต้น ในการสังเคราะห์กรดอะมิโนจำเป็น และสารเมแทบอไลต์ทุติยภูมิ เช่น โฟเลต (folate) ยูบิควิโนน (ubiquinone) โคเอนไซม์ คิวเทน (coenzyme Q10) รวมทั้งยาปฏิชีวนะหลายชนิด สารตัวกลางในวิถีนี้ถูกนำไปใช้ประโยชน์ เช่น กรดชิคิมิค (shikimic acid) ใช้เป็นสารตั้งต้นในการผลิตยาที่เป็นสารยับยั้งการทำงานของเอนไซม์นิวรามินิเดส (neuraminidase inhibitor) ต้านไวรัสโรคหวัด เป็นต้น ดังนั้นบทความนี้เป็นบทความสรุปและทบทวนการศึกษาวิจัยที่เกี่ยวข้องกับ วิศวกรรมเมแทบอลิคในวิถีชิคิเมตของแบคทีเรีย เพื่อให้แบคทีเรียสะสมสารตัวกลางในวิถีนี้เพิ่มมากขึ้น หรือเพื่อทำให้แบคทีเรียนั้นๆ สามารถสร้างยาปฏิชีวนะ เช่น คลอแรมเฟนิคอล ได้เพิ่มขึ้น นอกจากนี้ยังได้ทบทวนการศึกษาเอนไซม์ในวิถีนี้ ที่เกี่ยวข้องกับการหายาเป้าหมายที่ยับยั้งแบคทีเรียก่อโรคหลายชนิด 

References

Bradley D (2005) Star role for bacteria in controlling flu pandemic. Nat Rev Drug Discov 4: 945–946.

Brown MP, Aidoo KA, Vining LC (1996) A role for pabAB, a p-aminobenzoate synthase gene of Streptomyces venezuelae ISP5230 in chloramphenicol biosynthesis. Microbiology 142: 1345–1355.

Bornemann S, Ramjee MK, Balasubramanian S, Abell C, Coggins JR, Lowe DJ, Thorneley RN (1995) Escherichia coli chorismate synthase catalyzes the conversion of (6S)-6-fluoro-5-enolpyruvylshikimate-3-phosphate to 6-fluorochorismate. J Biol Chem 270: 22811–22815.

Chang, Z, Sun Y, He J, Vining LC (2001) p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Microbiology 147: 2113–2126.

Chang YC, Almy EA, Blamer GA, Gray JI, Frost JW, Strasburg GM (2003) Antioxidant activity of 3-dehydroshikimic acid in liposomes, emulsions, and bulk Oil. J Agric Food Chem 51: 2753–2757.

Cheng WC, Chang YN, Wang WC (2005) Structural basis for shikimate-binding specificity of Helicobacter pylori shikimate kinase. J Bacteriol 187: 8156–8163.

Dell KA, Frost J.W. (1993) Identification and removal of impediments to biocatalytic synthesis of aromatics from D-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis. J Am Chem Soc 115: 11581–11589.

Davies GM, Barrett-Bee KJ, Jude DA, Lehan M, Nichols WW, Pinder PE, Thain JL, Watkins WJ, Wilson RG (1994). (6S)-6-Fluoroshikimic acid, an antibacterial agent acting on the aromatic biosynthetic pathway. Antimicrob Agents Chemother 38: 403–406.

Draths KM, Knop DR, Frost JW (1999) Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 121: 1603–1604.

Enrich LB, Scheuermann ML, Mohadjer A, Matthias KR, Eller CF, Newman MS, Fujinaka M, Poon T (2008) Liquidambar styraciflua: a renewable source of shikimic acid. Tetrahedron Lett 49: 2503–2505.

Escalante A, Calderon R, Valdivia A, de Anda R, Hernandez G, Ramirez OT, Gosset G, Bolivar F (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Fact 9: 1–12.

Eykman, JF (1881) The Botanical Relations of Illicium religiosum, Sieb., Illicium anisatum. Am J Pharm 53: 5–9.

Fernández-Martínez LT, Borsetto C, Gomez-Escribano JP, Bibb MJ, Al-Bassam MM, Chandra G, Bibb MJ (2014) New insights into chloramphenicol biosynthesis in Streptomyces venezuelae ATCC 10712. Antimicrob Agents Chemother 58: 7441–7450.

Fonseca IO, Magalhães MLB, Oliveira JS, Silva RG, Mendes MA, Palma MS, Santos DS, Basso LA (2006) Functional shikimate dehydrogenase from Mycobacterium tuberculosis H37Rv: Purification and characterization. Protein Expres Purif 46: 429–437.

Franz JE (1974) N-phosphonomethyl-glycine phytotoxicant compositions assigned to Monsanto Company. US patent 3799758 3–26.

Garbe T, Jones C, Charles I, Dougan G, Young D (1990) Cloning and characterization of the aroA gene from Mycobacterium tuberculosis. J Bacteriol 172: 6774–6782.

Han C, Wang L, Yu K, Chen L, Hu L, Chen K, Jiang H, Shen X (2006) Biochemical characterization and inhibitor discovery of shikimate dehydrogenase from Helicobacter pylori. FEBS J 273: 4682–4692.

He J, Magarvey N, Piraee M, Vining LC (2001) The gene cluster for chloramphenicol biosynthesis in Streptomyces venezuelae ISP5230 includes novel shikimate pathway homologues and a monomodular nonribosomal peptide synthetase gene. Microbiology 147: 2817–2829.

Herrmann KM (1995) The shikimate pathway as an entry to aromatic secondary metabolism. Plant Physiol 107: 7–12.

Herrmann KM, Weaver L (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50: 473–503.

Iomantas YAV, Abalakina EG, Polanuer BM, Yampolskaya TA, Bachina TA, Kozlov YI (2002) Method for producing shikimic acid. US Patent 6,436,664.

Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Lidén G (2005) Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions. Biotechnol Bioeng 9: 541–552.

Juminaga D, Baidoo EEK, Redding-Johanson AM, Batth TS, Burd H, Mukhopadhyay A, Petzold CJ, Keasling JD (2012) Modular engineering of L-tyrosine production in Escherichia coli. Appl Environ Microbiol 78: 89–98.

Karpf M, Trussardi R (2001) New, azide-free transformation of epoxides into 1,2-diamino compounds: Synthesis of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu). J Org Chem 66: 2044–2051.

Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY, Laver WG, Stevens RC (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119: 681–690.

Kim CU, Lew W, Williams MA, Wu H, Zhang L, Chen X, Escarpe PA, Mendel DB, Laver WG, Stevens RC (1998) Structure–activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem 41: 2451–2460.

Knop DR, Draths KM, Chandran SS, Barker JL, von Daeniken R, Weber W, Frost JW (2001) Hydroaromatic equilibration during biosynthesis of shikimic acid. J Am Chem Soc 123: 10173–10182.

Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Engineer 5: 277–283.

Li R, Townsend CA (2006) Rational strain improvement for enhanced clavulanic acid production by genetic engineering of the glycolytic pathway in Streptomyces clavuligerus. Metab Eng 8: 240–252.

Lu JL, Liao JC (1997) Metabolic engineering and control analysis for production of aromatics: Role of transaldolase. Biotechnol Bioeng 53: 132–138.

Lütke-Eversloh T, Stephanopoulos G (2008) Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: identification of enzymatic bottlenecks by systematic gene overexpression. Metab Eng 10: 69–77.

McDonald M, Mavrodi DV,Thomashow LS, Floss HG (2001) Phenazine biosynthesis in Pseudomonas fluorescens: Branchpoint from the primary shikimate biosynthesis pathway and role of phenazine-1,6-dicarboxylic acid. J Am Chem Soc 123: 9459–9460.

McConkey GA (1999). Targeting the shikimate pathway in the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 43: 175–177.

de Mendonça JD, Ely F, Palma MS, Frazzon J, Basso LA, Santos DS (2007) Functional characterization by genetic complementation of aroB-encoded dehydroquinate synthase from Mycobacterium tuberculosis H37Rv and its heterologous expression and purification. J Bacteriol 189: 6246–6252.

Nirmal CR, Rao R, Hopper W (2015) Inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis: In silico screening and in vitro validation. Eur J Med Chem 105: 182–193.

Parish T, Stoker NG (2002) The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology 148: 3069–3077.

Qi H, Zhao S, Wen J, Chen Y, Jia X (2014) Analysis of ascomycin production by shikimic acid resistance and addition in Streptomyces hygroscopicus var. ascomyceticus. Biochem Eng J 82: 124–133.

Richman JE, Chang YC, Kambourakis S, Draths KM, Almy E, Snell KD,Strasburg GM, Frost JW (1996) Reaction of 3-dehydroshikimic acid with molecular oxygen and hydrogen peroxide: products, mechanism, and associated antioxidant activity. J Am Chem Soc 118: 11587–11591.

Rodrigues Vda S Jr, Basso LA, Santos DS (2009) Homogeneous recombinant Mycobacterium tuberculosis shikimate dehydrogenase production: An essential step towards target-based drug design. Int J Biol Macromol 45: 200–205.

Ryu Y-G, Butler MJ, Chater KF, Lee KJ (2006) Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor. Appl Environ Microbiol 72: 7132–7139.

Simithy J, Reeve N, Hobrath JV, Reynolds RC, Calderón AI (2014) Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS. Tuberculosis 94: 152–158.

Tang Z, Xiao C, Zhuang Y, Chu J, Zhang S, Herron PR, Hunter IS, Guo M (2011) Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the

G6PDH gene in the pentose phosphate pathway. Enzyme Microb Technol 49: 17–24.

Thykaer J, Nielsen J, Wohlleben W, Weber T, Gutknecht M, Lantz AE, Stegmann E (2010) Increased glycopeptide production after overexpression of shikimate pathway genes being part of the balhimycin biosynthetic gene cluster. Metab Eng 12: 455–461.

Vining L, Stuttard C (1995) Chloramphenicol. Biotechnol 28: 505–530.

Vitayakritsirikul V, Jaemsaeng R, Lohmaneeratana K, Thanapipatsiri A, Daduang R, Chuawong P, Thamchaipenet A (2016) Improvement of chloramphenicol production in Streptomyces venezuelae ATCC 10712 by overexpression of the aroB and aroK genes catalysing steps in the shikimate pathway. Antonie Van Leeuwenhoek 109:379–88.

Downloads

Published

2016-12-21

Issue

Section

Review Articles