Diversity of CRISPR Array and In silico PCR-RFLP Typing Application in Salmonella enterica

Authors

  • Monthon Lertworapreecha School of Microbiology, Department of Biology, Faculty of Science, Thaksin University, Phatthalung Province, Thailand, 93210
  • Sirilak Noomee Department of Biology, Faculty of Science, Thaksin University, Phatthalung, 93210, Thailand
  • Kumchai Tontikapong Department of Animal Production Technology, Faculty of Technology and Community Development, Thaksin University, Phatthalung, 93210, Thailand

DOI:

https://doi.org/10.14456/gag.2018.6

Keywords:

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), diversity, Salmonella enterica, In silico PCR-RFLP

Abstract

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is the special arrangements of the nucleotide array with alternating between short direct repeat separated by a short spacer sequence. Along with the CRISPR system, they encode an adaptive immune system of bacteria that protects bacterial cell against bacteriophage and plasmid infection. The CRISPR system is found diversely among bacterial species; moreover, these arrays are able to transfer from generation to generation via vertical transfer. However, a survey of the CRISPR arrays diversity in Salmonella enterica isolated from various sources, in order to further contribute to the understanding and application still limit report in Thailand. Here we described two CRISPR-I and CRISPR-II system found in Salmonella enterica, following the analysis of 117 isolates of Salmonella enterica from various sources. The results found that 48 (41%) and 71 (83%) of Salmonella enterica were positive for CRISPR-I and CRISPR-II respectively. The nucleotide analysis shown that the CRISPR-I and CRISPR-II spacer were varying between each isolates, ranged between 2-15 and 1-17 spacers respectively. Moreover, sequencing analysis indicated that the direct repeat region in both CRISPR-I and CRISPR-II has a high diversity. Our study also showed that in silico PCR-RFLP of CRISPR region, and phylogenetic tree construction of the spacers from Salmonella Weltevreden isolated from different sources indicated that it have discrimination ability between intra-serovar. These results imply that the CRISPR array could probably apply as a molecular marker for epidemiological study in Salmonella enterica.

References

Aarestrup F M, Lertworapreecha M, Evans M C, Bangtrakulnonth A, Chalermchaikit T, Hendriksen R S, & Wegener H C (2003) Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries. J Antimicrob Chemother 52: 715-718. doi: Doi 10.1093/Jac/Dkg426

Barrangou R (2015) Diversity of CRISPR-Cas immune systems and molecular machines. Genome Biol 16: 247. doi:10.1186/s13059-015-0816-9

Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero D A, & Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712. doi: DOI 10.1126/science.1138140

Briner A E, Lugli G A, Milani C, Duranti S, Turroni F, Gueimonde M, Margolles A, van Sinderen D, Ventura M, & Barrangou R (2015) Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium. PLoS One 10. doi: ARTN e013366110.1371/journal.pone.0133661

Crooks G E, Hon G, Chandonia J M, & Brenner S E (2004) WebLogo: A sequence logo generator. Genome Res 14: 1188-1190. doi: 10.1101/gr.849004

Deltcheva E, Chylinski K, Sharma C M, Gonzales K, Chao Y J, Pirzada Z A, Eckert M R, Vogel J, & Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602-+. doi: 10.1038/nature09886

Fabre L, Zhang J, Guigon G, Le Hello S, Guibert V, Accou-Demartin M, de Romans S, Lim C, Roux C, Passet V, Diancourt L, Guibourdenche M, Issenhuth-Jeanjean S, Achtman M, Brisse S, Sola C, & Weill F X (2012) CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PLoS One 7: e36995. doi: 10.1371/journal.pone.0036995

Grissa I, Vergnaud G, & Pourcel C (2007b) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35: W52-57. doi: 10.1093/nar/gkm360

Groenen P M, Bunschoten A E, van Soolingen D, & van Embden J D (1993) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 10: 1057-1065.

Hall T. (2004). BioEdit version 7.0.0 Retrieved March 22,, 2017, from http://www.mbio.ncsu.edu/BioEdit/BioDoc.pdf

Horvath P, & Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167-170. doi: 10.1126/science.1179555

Horvath P, Romero D A, Coute-Monvoisin A C, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, & Barrangou R (2008a) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190: 1401-1412. doi: 10.1128/Jb.01415-07

Iranzo J, Lobkovsky A E, Wolf Y I, & Koonin E V (2013) Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context. J Bacteriol 195: 3834-3844. doi: 10.1128/JB.00412-13

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, & Charpentier E (2012) A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337: 816-821. doi: 10.1126/science.1225829

Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, Bunschoten A, Molhuizen H, Shaw R, Goyal M, & van Embden J (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35: 907-914.

Kauffmann F (1971) On the classification and nomenclature of the genus Salmonella. Acta Pathol Microbiol Scand B Microbiol Immunol 79: 421-422.

Koonin E V, & Makarova K S (2013) CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 10: 679-686. doi: 10.4161/rna.24022

Kumar S, Stecher G, & Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870-1874. doi: 10.1093/molbev/msw054

Lertworapreecha. M, Noomee. S, Sutthimusik. S, Utarapichat. B, & Tontikapong. K (2016) Multidrug resistant and extended spectrum -LACTAMASE producing Salmonella enterica isolated from food animals in phatthalung, Thailand. Southeast Asian J Trop Med and Public Health 47 1257-1269.

Marraffini L A, & Sontheimer E J (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11: 181-190. doi: 10.1038/nrg2749

Pougacha K. S., Lopatina A V, & Severinov K. V. (2012) CRISPR adaptive immunity systems of procaryotes. Mol Biol (Mosk) 46: 195-203.

Pourcel C, Andre-Mazeaud F, Neubauer H, Ramisse F, & Vergnaud G (2004) Tandem repeats analysis for the high resolution phylogenetic analysis of Yersinia pestis. BMC Microbiol 4: 22. doi: 10.1186/1471-2180-4-22

Pourcel C, Salvignol G, & Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiol 151: 653-663. doi: 10.1099/mic.0.27437-0

Rath D, Amlinger L, Rath A, & Lundgren M (2015) The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie 117: 119-128. doi: 10.1016/j.biochi.2015.03.025

Schouls L M, Reulen S, Duim B, Wagenaar J A, Willems R J L, Dingle K E, Colles F M, & Van Embden J D A (2003) Comparative genotyping of Campylobacter jejuni by amplified fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: Strain diversity, host range, and recombination. J Clin Microbiol 41: 15-26. doi: 10.1128/Jcm.41.1.15-26.2003

Shariat N, Kirchner M K, Sandt C H, Trees E, Barrangou R, & Dudley E G (2013) Subtyping of Salmonella enterica serovar Newport outbreak isolates by CRISPR-MVLST and determination of the relationship between CRISPR-MVLST and PFGE results. J Clin Microbiol 51: 2328-2336. doi: 10.1128/JCM.00608-13

Shariat N, Timme R E, Pettengill J B, Barrangou R, & Dudley E G (2015) Characterization and evolution of Salmonella CRISPR-Cas systems. Microbiology-Sgm 161: 374-386. doi: 10.1099/mic.0.000005

Sheludchenko M S, Huygens F, Stratton H, & Hargreaves M (2015) CRISPR Diversity in E. coli Isolates from Australian Animals, Humans and Environmental Waters. PLoS One 10. doi: ARTN e012409010.1371/journal.pone.0124090

Terns M P, & Terns R M (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14: 321-327. doi: DOI 10.1016/j.mib.2011.03.005

van der Oost J, Jore M M, Westra E R, Lundgren M, & Brouns S J (2009) CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34: 401-407. doi: 10.1016/j.tibs.2009.05.002

Vincze T, Posfai J, & Roberts R J (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31: 3688-3691. doi: 10.1093/nar/gkg526

Zou W, Lin W J, Foley S L, Chen C H, Nayak R, & Chen J J (2010) Evaluation of Pulsed-Field Gel Electrophoresis Profiles for Identification of Salmonella Serotypes. J Clin Microbiol 48: 3122-3126. doi: 10.1128/Jcm.00645-10

Zou W, Lin W J, Hise K B, Chen H C, Keys C, & Chen J J (2012) Prediction System for Rapid Identification of Salmonella Serotypes Based on Pulsed-Field Gel Electrophoresis Fingerprints. J Clin Microbiol 50: 1524-1532. doi: 10.1128/Jcm.00111-12

Downloads

Published

2019-04-21

Issue

Section

Research Articles