Noncanonical functions of lysyl-tRNA synthethase in HIV-1 packaging

Authors

  • Nonlawat Boonyalai Department of Biochemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand.

DOI:

https://doi.org/10.14456/tjg.2011.9

Keywords:

lysyl-tRNA synthetase, diadenosine polyphosphate, HIV-1 capsid protein, HIV-1 packaging

Abstract

Lysyl-tRNA synthetase (LysRS) catalyzesthe formation of Lys-tRNALys. Addition to its role inthe translation apparatus, LyRS has other alternativefunctions which are of great interest. LysRSinvolves in the production of diadenosinetetraphosphate, acts as a cytokine-like molecule andplay a major role in HIV-1 packaging. Interestingly,reverse transcription of the HIV-1 genome is primedby a human tRNALys3 which is packaged into thevirion by the HIV-1 Gag and LysRS. However, thestructural basis for simultaneous packaging oftRNALys3, LysRS and Gag is still not understood.Better understanding of the interaction amongtRNALys3, LysRS and Gag might open the way forthe design and screening of small peptides and/orother small molecules capable of potentiallyinterfering with the HIV-1 life cycle by blockadinginteractions between LysRS and the Gag CA-Cdomain.

References

Berkowitz, R., Fisher, J. and Goff, S.P. 1996. RNA

packaging. Curr Top Microbiol Immunol 214:

-218.

Blanqet, S., Plateau, P. and Brevet, A. 1983. The

role of zinc in 5,5- diadenosine tetraphosphate

production by aminoacyl-transfer RNA

synthetase. Mol Cell Biochem 52:3-11.

Brevet, A., Chen, J, and et. al. 1995. Comparison of

the enzymatic properties of the two E. coli

lysyl-tRNA synthetase species. J Bol Chem

: 14439-14444.

Cen, S., Javanbakht, H., Kim, S., Shiba, K., Craven,

R., Rein, A., Ewalt, K., Schimmel, P.,

Musier-Forsyth, K. and Kleiman, L. 2002.

Retrovirus-specific packaging of aminoacyltRNA

synthetases with cognate primer tRNAs.

J Virol 76: 13111-13115.

Cen, S., Javanbakht, H., Niu, M. and Kleiman, L.

Ability of wild-type and mutant

lysyl-tRNA synthetase to facilitate tRNALys

incorporation into human immunodeficiency

virus type 1. J Virol 78: 1595-1601.

Cen, S., Khorchid, A., Javanbakht, H., Gabor, J.,

Stello, T., Shiba, K., Musier-Forsyth, K. and

Kleiman, L. 2001. Incorporation of lysyl-tRNA

synthetase into human immunodeficiency

virus type 1. J Virol 75: 5043-5048.

Charlier, J. and Sanchez, R. 1987. Lysyl-tRNA

synthetase from E. coli K12 chromatographic

heterogeneity and the lysU gene product.

Biochem J 248: 43-51.

Francin, M., Kaminska, M., Kerjan, P. and Mirande,

M. 2002. The N-terminal domain of mammalian

lysyl-tRNA synthetase is a functional

tRNA-binding domain. J Biol Chem 277:

-1769.

Francin, M. and Mirande, M. 2003. Functional

dissection of the eukaryotic-specific tRNAinteracting

factor of lysyl-tRNA synthetase.

J Biol Chem 278: 1472-1479.

Gabor, J., Cen, S., Javanbakht, H., Niu, M. and

Kleiman, L. 2002. Effect of altering the tRNALys3

concentration in human immunodeficiency

virus type 1 upon its annealing to viral RNA,

GagPol incorporation, and viral infectivity.

J Virol 76: 9096-9102.

Garrison, P.N., and Barnes, L.D. 1992. Determination

of dinucleoside polyphosphates. In: A.G.

McLennan (ed.), Ap4A and Other Dinucleoside

Polyphosphates. Boca Raton: CRC Press. pp

-61.

Geigenmuller, U. and Linial, M.L. 1996. Specific

binding of human immunodeficiency virus

type 1 (HIV-1) Gag-derived proteins to a 5’

HIV-1 genomic RNA sequence. J Virol 70:

-671.

G nther Sillero, M.A., and Cameselle, J.C. 1992.

Interactions of dinucleoside polyphophates

with enzymes and other proteins. In: A.G.

McLennan (ed.), Ap4A and Other

Dinucleoside Polyphosphates). Boca Raton:

CRC Press. pp. 205-228.

Guo, F., Cen, S., Niu, M., Javanbakht, H. and

Kleiman, L. 2003. Specific inhibition of the

synthesis of human lysyl-tRNA synthetase

results in decreases in tRNALys incorporation,

tRNALys3 annealing to viral RNA, and viral

infectivity in human immunodeficiency virus

type 1. J Virol 77: 9817-9822.

Guo, M., Ignatov, M., Musier-Forsyth, K.,

Schimmel, P. and Yang, X.L. 2008. Crystal

structure of tetrameric form of human lysyl-tRNA

synthetase: implications for multisynthetase complex formation. Proc Natl Acad Sci USA

: 2331-2336.

Guo, M., Shapiro, R., Morris, G.M., Yang, X.L. and

Schimmel, P. 2010. Packaging HIV virion

components through dynamic equilibria of a

human tRNA synthetase. J Phys Chem B 114:

-16279.

Hassani, M., Pincus, D. H, Bennett, G.N. and

Hirshfield, I.N. 1992. Temperature-dependent

induction of an acid-inducible stimulon of

E. coli in broth. Appl Environ Microbiol 58:

-2707.

Hassani, M., Saluta, M.V. Bennett, G.N. and

Hirshfield, I.N. 1991. Partial characterization

of lysU mutant of E. coli K12. J Bacteriol 173:

-1970.

Huang, Y., Mak, J., Cao, Q., Li, Z., Wainberg, M.A.

and Kleiman, L. 1994. Incorporation of excess

wild-type and mutant tRNALys3 into human

immunodeficiency virus type 1. J Virol 68:

-7683.

Ibba, M., Morgan, S., Curnow, A.W., Pridmore,

D.R., Vothknecht, U.C., Gardner, W., Lin,W.,

Woese, C.R. and S ll, D. 1997a. A

euryarchaeal lysyl-tRNA synthetase: resemblance

to class I synthetase. Science 278: 1119-1122.

Ibba, M., Bono, J.L., Rosa, P.A. and S ll, D. 1997b.

Archaeal-type lysyl-tRNA synthetase in the

Lyme disease spirochete Borrelia burgdorferi.

Proc Natl Acad Sci USA 94: 14383-14388.

Ivanov, D., Stone, J.R., Maki, J.L., Collins, T. and

Wagner, G. 2005. Mammalian SCAN domain

dimer is a domain-swapped homolog of the

HIV capsid C-terminal domain. Mol Cell 17:

-143.

Javanbakht, H., Cen, S., Musier-Forsyth, K. and

Kleiman, L. 2002. Correlation between

tRNALys3 aminoacylation and its incorporation

into HIV-1. J Biol Chem 277: 17389-17396.

Javanbakht, H., Halwani, R., Cen, S., Saadatmand,

J., Musier-Forsyth, K., Gottlinger, H. and

Kleiman, L. 2003. The interaction between

HIV-1 Gag and human lysyl-tRNA synthetase

during viral assembly. J Biol Chem 278:

-27651.

Khorchid, A., Javanbakht, H., Wise, S., Halwani, R.,

Parniak, M.A., Wainberg, M.A. and Kleiman,

L. 2000. Sequences within Pr160gag-pol

affecting the selective packaging of primer

tRNALys3 into HIV-1. J Mol Biol 299: 17-26.

Kisselev, L.L., and Baturina, I.D. 1972. Two

enzymatically active forms of lysyl-tRNA

synthetase from E. coli B. FEBS Lett 22: 231-

Kleiman, L. and Cen, S. 2004. The tRNALys

packaging complex in HIV-1. Int J Biochem B

: 1776-1786.

Kleiman, L., Jones, C.P. and Musier-Forsyth, K.

Formation of the tRNALys packaging

complex in HIV-1. FEBS Lett 584: 359-365.

Kovaleski, B.J., Kennedy, R., Hong, M.K., Datta, S.

A., Kleiman, L., Rein, A. and Musier-Forsyth,

K. 2006. In vitro characterization of the

interaction between HIV-1 Gag and human

lysyl-tRNA synthetase. J Biol Chem 281:

-19456.

Kovaleski, B.J., Kennedy, R., Khorchid, A.,

Kleiman, L., Matsuo, H. and Musier-Forsyth,

K. 2007. Critical role of helix 4 of HIV-1

capsid C-terminal domain in interactions with

human lysyl-tRNA synthetase. J Biol Chem

: 32274-32279.

Martin, F., Pintor, J., Rovira, J.M., Ripoll, C.,

Miras-Portugal, M.T. and Soria, B. 1998. Intracellular diadenosine polyphosphates: a

novel second messenger in stimulus-secretion

coupling. FASEB J 12: 1499-1506.

McLennan, A.G. 2000. Dinucleoside polyphosphatesfriend

or foe? Pharmacol Therapeut 87: 73-89.

Na Nakorn, P., Treesuwan, W., Choowongkomon,

K., Hannongbua, S. and Boonyalai, N. 2011.

In vitro and in silico binding study of the

peptide derived from HIV-1 CA-CTD and

LysRS as a potential HIV-1 blocking site.

J Theor Biol 270: 88-97.

Nathanson, L. and Deutscher, M.P. 2000. Active

aminoacyl-tRNA synthetases are present

in nuclei as a high molecular weight

multienzyme complex. J Biol Chem 275:

-31562.

Onesti, S., Miller, A.D, and Brick, P. 1995. The

crystal structure of the lysyl-tRNA synthetse

(LysU) form E. coli. Structure 3: 163-176.

Paulovich, A.G., Toczyski, D.P. and Hartwell, L.H.

When check-points fail. Cell 88: 315-

Pettit, S.C., Everitt, L.E., Choudhury, S., Dunn,

B.M. and Kaplan, A.H. 2004. Initial cleavage

of the human immunodeficiency virus type 1

GagPol precursor by its activated protease

occurs by an intramolecular mechanism.

J Virol 78: 8477-8485.

Rapaport, E., and Zamecnik, P.C. 1976. Presence of

diadenosine 5, 5 -P1,P4-tetraphosphate (Ap4A)

in mammalian cells in levels varying widely

with proliferative activity of the tissue: a

possible positive “pleiotypic activator”. Proc

Natl Acad Sci USA 73: 3984-3988.

Saadatmand, J., Guo, F., Cen, S., Niu, M. and

Kleiman, L. 2008. Interactions of reverse

transcriptase sequences in Pol with Gag and

LysRS in the HIV-1 tRNALys3 packaging/

annealing complex. Virology 380: 109-117.

Terada, T., Nureki, O., Ishitani, R., Ambrogelly, A.,

Ibba, M., S ll, D. and Yokoyama, S. 2002.

Functional convergence of two lysyl-tRNA

synthetase with unrelated topologies. Nat

Struct Biol 9: 257-262.

Weinmann-Dorsch, C., Hedl, A., Grummt, I.,

Albert, W., Ferdinand, F.J., Friis, R.R.,

Pierron, G., Moll, W. and Grummt, F. 1984.

Drastic rise of intracellular adenosine -5-

tetraphospho -5- adenosine correlates with

onset of DNA synthesis in eukaryotic cells.

Eur J Biochem 138: 179-185.

Wills, J.W. and Craven, R.C. 1991. Form, function,

and use of retroviral Gag proteins. AIDS

(London) 5: 639-654.

Worthylake, D.K., Wang, H., Yoo, S., Sundquist,

W.I. and Hill, C.P. 1999. Structures of the

HIV-1 capsid protein dimerization domain at

6 resolution. Acta Crystallogr D D55: 85-

Wright, M., Boonyalai, N., Tanner, J.A., Hindley,

A.D. and Miller, A.D. 2006. The duality of

LysU, a catalyst for both Ap4A and Ap3A

formation. FEBS J 273: 3534-3544.

Downloads

Published

2012-04-02

Issue

Section

Review Articles