DNA marker for A1 and A2 Musa genome identification
DOI:
https://doi.org/10.14456/tjg.2011.1Keywords:
banana, Musa, DNA marker, SSHAbstract
Musa acuminata Colla and Musa balbisianaColla are expected to be ancestors of cultivatedbananas which are highly variable throughoutThailand. Four genome types of Musa are reportedas A, B, S and T. A new and highly effectivemethod, suppression subtractive hybridization(SSH), has been introduced to develop markers foredible banana genome identification. Four primerpairs, SSH14, SSH21, SSH23 and SSH255, arespecific to A1 genome with the size of 250, 228, 572and 376 bp, respectively, 4 primer pairs, SSH20,SSH26, SSH66 and SSH214, are specific to A2genome with the size of 540, 473, 393 and 534 bp,respectively. Moreover, one primer pair, SSH10,could identify the common A and B genomes withthe size of 433 and 700 bp, respectively. Thisproved that SSH is an effective technique foridentification of closely related organism.References
เบญจมาศ ศิลาย้อย. 2545. กล้วย. สำนักพิมพ์
มหาวิทยาลัยเกษตรศาสตร์, กรุงเทพฯ.
อัญมณี อาวุชานนท์. 2544. การประยุกต์ใช้การตรวจ
สอบลายพิมพ์ดีเอ็นเอและ Genomic In Situ
Hybridization ในการศึกษายีโนมของกล้วยบาง
ชนิด. วิทยานิพนธ์ปริญญาโท, มหาวิทยาลัย
เกษตรศาสตร์.
Agrawal, G.K., Pandey, R.N. and Argawal, V.P.
Isolation of DNA from Choerospondias
asillaris leaves. Biotech Biodiv Lett 2: 19–24.
Boonruangrod, R., Fluch, S. and Burg, K. 2009.
Elucidation of origin of the present day hybrid
banana cultivars using the 5/ ETS rDNA
sequence information. Mol Breeding 24: 77–91.
Cheesman, E.E., 1948. Classification of the bananas II.
The genus Musa L., Kew Bulletin 2: 106–117.
Diatchenko, L., Lau, Y.F., Campbell, A.P.,
Chenchik, A., Moqadam, F., Huang, B.,
Lukyanov, S., Lukyanov, K., Gurskaya, N.,
Sverdlov, E.D. and Siebert, P.D. 1996.
Suppression subtractive hybridization: a
method for generating differentially regulated
or tissue-specific cDNA probes and libraries.
Proc Natl Acad Sci USA 93: 6025–6030.
D’ Hont, A., Paget-Goy, A., Escoute, J. and Carreel,
F. 2000. The interspecific genome structure of
cultivated bananas, Musa spp. revealed by
genomic DNA in situ hybridisation. Theor
Appl Genet 100: 177–183.
Kalendar, R., Lee, D., Schulman, A.H. 2009.
FastPCR software for PCR primer and probe
design and repeat search. Genes Genomes
Genomics 3: 1–14. [http://primerdigital.com/
fastpcr.html]
Kibbe, W.A. 2007. OligoCalc: an online
oligonucleotide properties calculator. (2007)
Nucleic Acids Res. 35: W43–W46. [http://
www.basic.northwestern.edu/biotools/
OligoCalc.html]
Li, T.X., Wang, J.K., Bai, Y.F. and Lu, Z.H. 2006.
Diversity suppression-subtractive hybridization
array for profiling genomic DNA
polymorphisms. J Integrat Plant Biol 48: 460
–467.
Lincoln, R.J., Boxshall, G.A. and Clark, P.F. 1982.
A Dictionary of Ecology, Evolution and
Systematics. Cambridge University Press,
London.
Marenda, M.S., Sagn , E., Poumarat, F. and Citti, C.
Suppression subtractive hybridization as
a basis to assess Mycoplasma agalactiae and
Mycoplasma bovis genomic diversity and
species-specific sequences. Microbiology 151:
–489.
Nwakanma, D.C., Pilly, M., Okoli, B.E. and
Tenkouano, A. 2003. Sectional relationships
in the gene Musa L. inferred from the
PCR-RFLP of organelle DNA sequence.
Theor Appl Genet 107: 850-856.
Osuji J.O., Harrison, G., Crouch, J. and
Heslop-Harrison, J.S. 1997. Identification of
the genomic constitution of Musa L. lines
(bananas, plantains, hybrids) using molecular
cytogenetics. Ann Bot 80: 787–793
Simmonds, N.W. and Shepherd, K. 1955. The
taxonomy and origins of the cultivated
bananas. J Linn Soc Lond Bot 55: 302–312.