Proximate Analysis Based Higher Heating Value Correlation of Biomass and Biochar from Cacao Husk and Corncob

Main Article Content

Nongnoot Srilek
Pran Makarkard
Wipawan Nunto
Pornhathai Putthawan
Sitthikrit Leckpool


This research article presents a selection routine for the higher heating value prediction correlations based on the proximate composition data. Thirty-one correlations from two different types - proximate analysis-based correlations and ultimate analysis -based correlations - were computed and validated against the experimental data from two Chiang Rai regional crop residue biomasses, including cacao husk and corncob, as well as their torrefied biochar. The result showed that the correlation PC15 was the most accurate in our study with the mean absolute error MAE = 4.69%.


Download data is not yet available.

Article Details

Author Biography

Nongnoot Srilek, คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏเชียงราย

Energy Engineering and Electrical Technology Program, Faculty of Industrial Technology, Chiang Rai Rajabhat University


Auprakul, U., and Srilek, N. (2021). Biochar and Briquette Biochar Production Technology from Waste Residue Biomass, Case Study of Sanmaka Community Chiang Rai Province. The 1st CRRU National Conference on Local Development, 1155-1167. (in Thai)

Basu, P. (2013). Biomass gasification, pyrolysis, and torrefaction: practical design and theory. Academic Press, Amsterdam.

Callejón-Ferre, A. J., Velázquez-Martí, B., López-Martínez, J. A., & Manzano-Agugliaro, F. (2011). Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value. Renewable and sustainable energy reviews, 15(2), 948-955.

Cordero, T., Marquez, F., Rodriguez-Mirasol, J., & Rodriguez, J. J. (2001). Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis. Fuel, 80(11), 1567-1571.

Demirbaş, A. (1997). Calculation of higher heating values of biomass fuels. Fuel, 76(5), 431-434.

Demirbaş, A. (2003). Sustainable cofiring of biomass with coal. Energy conversion and management, 44(9), 1465-1479.

Ebeling, J. M., & Jenkins, B. M. (1985). Physical and chemical properties of biomass fuels. Transactions of the ASAE, 28(3), 898-0902.

Energy Policy and Planning Office Ministry of Energy. (2021). Alternative Energy Development Plan: AEDP2015. [online], Available: access on November 29, 2021. (in Thai)

Friedl, A., Padouvas, E., Rotter, H., & Varmuza, K. (2005). Prediction of heating values of biomass fuel from elemental composition. Analytica chimica acta, 544(1-2), 191-198.

Homchat, K. (2013). Pyrolysis of Cassava Rhizome in metal kiln for charcoal production (Doctoral’s thesis). Chiang Mai: Chiang Mai University.

Jiménez, L., & González, F. (1991). Study of the physical and chemical properties of lignocellulosic residues with a view to the production of fuels. Fuel, 70(8), 947-950.

Kreatananchai, B. (2013). Parametric and cost analysis of biochar production from agricultural residues by slow pyrolysis process. (Master’s thesis). Chiang Mai: Chiang Mai University.

Kaewpengkrow (Rittichote), P., Usapein, P., and Sripha, Y. (2020). Increasing Heating value of Biochar using Pyrolysis of Alkaline Pretreated Rice Straw. The Journal of Industrial Technology: Suan Sunandha Rajabhat University, 8(2), 27-35. (in Thai)

Kathiravale, S., Yunus, M. N. M., Sopian, K., Samsuddin, A. H., & Rahman, R. A. (2003). Modeling the heating value of Municipal Solid Waste. Fuel, 82(9), 1119-1125.

Nhuchhen, D. R., & Afzal, M. T. (2017). HHV predicting correlations for torrefied biomass using proximate and ultimate analyses. Bioengineering, 4(1), 7.

Nhuchhen, D. R., & Salam, P. A. (2012). Estimation of higher heating value of biomass from proximate analysis: A new approach. Fuel, 99, 55-63.

Onsree, T., & Tippayawong, N. (2020). Torrefaction of Maize Residue Pellets with Dry Flue Gas. BioEnergy Research, 13, 1-11.

Parikh, J., Channiwala, S. A., & Ghosal, G. K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 84(5), 487-494.

______. (2007). A correlation for calculating elemental composition from proximate analysis of biomass materials. Fuel, 86(12-13), 1710-1719.

Ramzy, E., Shaharin, A., & Bambang, A. (2013). Prediction of heating values of oil palm fronds from ultimate analysis. Journal of Applied Sciences, 13(3), 491-496.

Pukumpuang, W., Prasertsin, T., Wanachewin, O., Putthawan, P., Intakul, N., Srilek, N., and Auprakul.U., (2021). Innovative development to increase value of cocoa in Chiang Rai Province. Research report. National Research Council of Thailand.

Saueprasearsit, P., Kaewsawing, S., and Thitkrathok, A. (2020). Bio-coal and Green Fuel Production from Durian Peel. Journal of Science and Technology Mahasarakham University, 39(5), 580-586. (in Thai)

Shen, J., Zhu, S., Liu, X., Zhang, H., & Tan, J. (2010). The prediction of elemental composition of biomass based on proximate analysis. Energy Conversion and Management, 51(5), 983-987.

Sheng, C., & Azevedo, J. L. T. (2005). Estimating the higher heating value of biomass fuels from basic analysis data. Biomass and bioenergy, 28(5), 499-507.

Soponpongpipat, N., Sittikul, D., & Sae-Ueng, U. (2015). Higher heating value prediction of torrefaction char produced from non-woody biomass. Frontiers in Energy, 9(4), 461-471.

Surono U.B., S. H., and Rohmat T.A. (2020). Improving Thermochemical and Physical Properties of Cocoa Pod Shell by Torrefaction and its Potential Utilization. International Energy Journal, 20(2), 141-154.

Tian, X., Dai, L., Wang, Y., Zeng, Z., Zhang, S., Jiang, L., . . . Ruan, R. (2020). Influence of torrefaction pretreatment on corncobs: A study on fundamental characteristics, thermal behavior, and kinetic. Bioresource Technology, 297, 122490.

Tillman, D.A. (1978). Wood as an Energy Source. Academic Press: New York, NY, USA.

Wilson, L., Yang, W., Blasiak, W., John, G. R., & Mhilu, C. F. (2011). Thermal characterization of tropical biomass feedstocks. Energy Conversion and Management, 52(1), 191-198.

Yin, C. Y. (2011). Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel, 90(3), 1128-1132.