Dietary Phospholipid-Supplementation Affects Blood Metrics, Reproductive Indices, and Biochemical Parameters of Female Shark Catfish, Pangasius nasutus

Main Article Content

Donald Torsabo
Benedict Terkula Iber
Nurizzati Idris
Ataguba Gabriel Arome
Victor Tosin Okomoda
Ivan Koh Chong Chu
Muhammad Yazed Abduh
Noordiyana Mat Nordin
Ambok Bolong Abol-Munafi

Abstract

Dietary phospholipids are known to enhance fish reproductive performance, but their effects on female shark catfish (Pangasius nasutus) remain underexplored. This study investigated the impact of dietary phospholipid supplementation on growth, reproductive performance, and biochemical parameters of female P. nasutus. The experiment used four cages (4×4×3 m) in an earthen pond, each housing 15 fish with an initial average weight of 643±0.34 g and length of 43.3±0.12 cm. Fish were fed a commercial diet supplemented with 0% (control), 1.5%, 2%, or 2.5% phospholipids for 90 days. Results indicated that phospholipid supplementation significantly improved the gonadosomatic index, oocyte development, and steroid hormone levels. The 2.5% phospholipid group exhibited the highest vitellogenin and 17β-estradiol levels, corresponding to advanced oocyte maturation. Hematological parameters, blood biochemistry, and fatty acid composition were unaffected, and no significant improvements in somatic growth or nutrient utilization were observed. The highest supplementation level (2.5%) yielded the greatest increases in the GSI, vitellogenin, and 17β-estradiol levels, resulting in the most developed oocytes. These findings demonstrate that dietary phospholipid supplementation, particularly at 2.5%, effectively enhances broodstock quality and reproductive potential in female P. nasutus.

Article Details

How to Cite
Torsabo, D., Iber, B. T. ., Idris, N., Arome, A. G., Okomoda, V. T., Chu, I. K. C. ., Abduh, M. Y., Nordin, N. M. ., & Abol-Munafi, A. B. (2025). Dietary Phospholipid-Supplementation Affects Blood Metrics, Reproductive Indices, and Biochemical Parameters of Female Shark Catfish, Pangasius nasutus . Journal of Fisheries and Environment, 49(1), 46–66. retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/259833
Section
Research Article

References

Abduh, M.Y., I.C.C Koh, A.B. Abol‐Munafi, N.H. Norazmi‐Lokman and N. Mat Noordin. 2021. Effects of dietary fish oil and corn oil on gonadosomatic and hepatosomatic index, gonadal histology, 17β‐oestradiol level and fatty acids profile of mahseer (Tor tambroides) broodstock in captivity. Aquaculture Nutrition 27(5): 1448−1459. DOI: 10.1111/anu.13282.

Abdulkadir, S. and M. Tsuchiya. 2008. One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. Journal of Experimental Marine Biology and Ecology 354(1): 1−8. DOI: 10.1016/j.jembe.2007.08.024.

Alimuddin, Y.G., V. Kiron, S. Satoh and T. Takeuchi 2005. Enhancement of EPA and DHA biosynthesis by over-expression of masu salmon Δ6-desaturase-like gene in zebrafish. Transgenic Research 14(2): 159–165. DOI: 10.1007/s11248-004-7435-7.

Association of Official Analytical Chemists (AOAC). 2006. Official Methods of Analysis of AOAC International, 18th ed. AOAC International, Gaithersburg, USA. 2000 pp.

Azani, N., A.B. Abol-Munafi, H.J. Liew, S. Kamarudin, A. Arshad, M.M. Hassan, A.H.M. Kamal and N.W. Rasdi. 2022. Different dietary effects on growth and reproduction of freshwater zooplankton Ceriodaphnia cornuta (Sars, 1885) and its potential use in Pangasius nasutus larval rearing. International Aquatic Research 14(3): 193−202. DOI: 10.22034/IAR.2022.1955847.1261.

Baras, E., R. Hafsaridewi, J. Slembrouck, A. Priyadi, Y. Moreau, L. Pouyaud and M. Legendre. 2010. Why is cannibalism so rare among cultured larvae and juveniles of Pangasius djambal? Morphological, behavioural and energetic answers. Aquaculture 305(1–4): 42−51. DOI: 10.1016/j.aquaculture.2010.04.004.

Bargui, R., A. Solgadi, B. Prost, M. Chester, A. Ferreiro, J. Piquereau and M. Moulin. 2021. Phospholipids: identification and implication in muscle pathophysiology. International Journal of Molecular Sciences 22(15): 8176. DOI: 10.3390/ijms22158176.

Buang, Y., Y.M. Wang, J.Y. Cha, K. Nagao and T. Yanagita. 2005. Dietary phosphatidylcholine alleviates fatty liver induced by orotic acid. Nutrition 21(7−8): 867−873. DOI: 10.1016/j.nut.2004.11.019.

Carboni, S., A.D. Hughes, T. Atack, D.R. Tocher and H. Migaud. 2013. Fatty acid profiles during gametogenesis in sea urchin (Paracentrotus lividus): Effects of dietary inputs on gonad, egg and embryo profiles. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 164(2): 376−382. DOI: 10.1016/j.cbpa.2012.11.010.

Cohn, J.S., E. Wat, A. Kamili and S. Tandy. 2008. Dietary phospholipids, hepatic lipid metabolism and cardiovascular disease. Current Opinion in Lipidology 19(3): 257−262. DOI: 10.1097/MOL.0b013e3282ffaf96.

Cui, Z., C. Liu, W. Rao, P. Chen, K. Lei, K. Mai and W. Zhang. 2023. Dietary phospholipids improve growth performance and change the lipid composition and volatile flavor compound profiles in the muscle of abalone Haliotis discus hannai by affecting the glycerophospholipid metabolism. Aquaculture Reports 30: 101567. DOI: 10.1016/j.aqrep.2023.101567.

Datta, S.N., A. Singh and G. Jassal. 2018. Study of gonadal development in striped catfish Pangasianodon hypophthalmus (Sauvage, 1878) during breeding season in Punjab, India. Journal of Experimental Zoology India 21(1): 185–189.

De Santis, C., J.F. Taylor, L. Martinez-Rubio, S. Boltana and D.R. Tocher. 2015. Influence of development and dietary phospholipid content and composition on intestinal transcriptome of Atlantic salmon (Salmo salar). PLoSOne 10(10): e0140964. DOI: 10.1371/journal.pone.0140964.

Dong, G.F., Q. Zou, H. Wang, F. Huang, X.C. Liu, L. Chen, C.Y. Yang and Y.O. Yang. 2014. Conjugated linoleic acid differentially modulates growth, tissue lipid deposition, and gene expression involved in the lipid metabolism of grass carp. Aquaculture 432: 181−191. DOI: 10.1016/j.aquaculture.2014.05.008.

Fazio, F. 2019. Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture 500: 237−242. DOI: 10.1016/j.aquaculture.2018.10.030.

Feng, S., Z. Cai, R. Zuo, K. Mai and Q. Ai. 2017. Effects of dietary phospholipids on growth performance and expression of key genes involved in phosphatidylcholine metabolism in larval and juvenile large yellow croaker, Larimichthys crocea. Aquaculture 469: 59−66. DOI: 10.1016/j.aquaculture.2016.12.002.

Flores, A., R. Wiff, K. Ganias and C.T. Marshall. 2019. Accuracy of gonadosomatic index in maturity classification and estimation of maturity ogive. Fisheries Research 210: 50−62. DOI: 10.1016/j.fishres.2018.10.009.

Fraher, D., A. Sanigorski, N.A. Mellett, P.J. Meikle, A.J. Sinclair and Y. Gibert. 2016. Zebrafish embryonic lipidomic analysis reveals that the yolk cell is metabolically active in processing lipid. Cell Reports 14(6): 1317−1329. DOI: 10.1016/j.celrep.2016.01.016.

Egessa, R., A. Szűcs, L. Ardó, J. Biró, E. Lengyel-Kónya, V. Banjac and Z.J. Sándor. 2024. Dietary inclusion of insect oil: Impact on growth, nutrient utilisation, lipid metabolism, antioxidant and immune-related responses in European catfish (Silurus glanis L). Aquaculture 592: 741213. DOI: 10.1016/j.aquaculture.2024.741213.

Gibbs, V.K., L.E. Heflin, W.T. Jones, M.L. Powell, A.L. Lawrence, R. Makowsky and S.A. Watts. 2015. Optimizing dietary levels of menhaden and soybean oils and soybean lecithin for pre-gonadal somatic growth in juveniles of the sea urchin Lytechinus variegatus. Aquaculture 446: 198–205. DOI: 10.1016/j.aquaculture.2015.05.013.

Guo, Q., L. Liu and B.J. Barkla. 2019. Membrane lipid remodeling in response to salinity. International Journal of Molecular Sciences 20(17): 4264. DOI: 10.3390/ijms20174264.

Gustiano, R., G.G. Teugels and L. Pouyaud. 2003. Revision of the Pangasius kunyit catfish complex, with description of two new species from South-East Asia (Siluriformes; Pangasiidae). Journal of Natural History 37(3): 357−376. DOI: 10.1080/713834687.

Hadarabi, M.E., C.R. Saad, S.A. Harmin, M.K.A. Satar and A.A. Kenari. 2011. Effects of phospholipids in the diet on biochemical factors of sturgeon fish (Huso huso) juveniles. African Journal of Biotechnology 10(42): 8511−8516. DOI: 10.5897/AJB10.1788.

Hammock, B.G., R. Hartman, R.A. Dahlgren, C. Johnston, T. Kurobe, P.W. Lehman, L.S. Lewis, E. Van Nieuwenhuyse, W.F. Ramirez-Duarte, A.A. Schultz and S.J. Teh. 2022. Patterns and predictors of condition indices in a critically endangered fish. Hydrobiologia 849(3): 675–695. DOI: 10.1007/s10750-021-04738-z.

Hassan, A., M.A. Ambak and A.P.A. Samad. 2011. Crossbreeding of Pangasianodon hypophthalmus (Sauvage, 1878) and Pangasius nasutus (Bleeker, 1863) and their larval development. Journal of Sustainability Science and Management 6(1): 28−35.

Huang, Y., J. Xu, Z. Sheng, N. Chen and S. Li. 2021. Integrated response of growth performance, fatty acid composition, antioxidant responses and lipid metabolism to dietary phospholipids in hybrid grouper (Epinephelus fuscoguttatus♀× E. lanceolatus♂) larvae. Aquaculture 541: 736728. DOI: 10.1016/j.aquaculture.2021.736728.

Huang, Y., J. Xu, Z. Sheng, R. Xie, H. Zhang, N. Chen and S. Li. 2022. Effects of dietary phospholipids on growth performance, fatty acid composition, and expression of lipid metabolism related genes of juvenile hybrid grouper (Epinephelus fuscoguttatus♀× E. lancolatus♂). Aquaculture Reports 22: 100993. DOI: 10.1016/j.aqrep.2021.100993.

Ibarz, A., I. Sanahuja, W.G. Nuez-Ortín, L. Martínez-Rubio and L. Fernández-Alacid. 2023. Physiological benefits of dietary lysophospholipid supplementation in a marine fish model: deep analyses of modes of action. Animals 13(8): 1381. DOI: 10.3390/ani13081381.

Iswanto, B. and E. Tahapan Ari. 2011. Embryogenesis and development of catfish larvae hybridized between female Siamese catfish (Pangasianodon hypophthalmus Sauvage, 1878) with male jambal catfish (Pangasius djambal Bleeker, 1846) and male catfish nasutus (Pangasius nasutus Bleeker, 1863). Journal of Aquaculture Research 6(2): 169−186. DOI: 10.15578/jra.6.2.2011.169-186.

Izquierdo, M.S., H. Fernandez-Palacios and A.G.J. Tacon. 2001. Effect of broodstock nutrition on reproductive performance of fish. Aquaculture 197(1–4): 25–42. DOI: 10.1016/S0044-8486(01)00581-6.

Izquierdo, M.S., S. Turkmen, D. Montero, M.J. Zamorano, J.M. Afonso V. Karalazos and H. Fernández-Palacios. 2015. Nutritional programming through broodstock diets to improve utilization of very low fishmeal and fish oil diets in gilthead sea bream. Aquaculture 449: 18–26. DOI: 10.1016/j.aquaculture.2015.03.032.

Jafari, F., F. Noori, N. Agh, A. Estevez, A. Ghasemi, C. Alcaraz and E. Gisbert. 2021. Phospholipids improve the performance, physiological, antioxidative responses and, lpl and igf1 gene expressions in juvenile stellate sturgeon (Acipenser stellatus). Aquaculture 541: 736809. DOI: 10.1016/j.aquaculture.2021.736809.

Jaxion-Harm, J. 2021. Effects of dietary phospholipids on early-stage Atlantic Salmon (Salmo salar) performance: A comparison among phospholipid sources. Aquaculture 544: 737055. DOI: 10.1016/j.aquaculture.2021.737055.

Jisr, N., G. Younes, C. Sukhn and M.H. El-Dakdouki. 2018. Length-weight relationships and relative condition factor of fish inhabiting the marine area of the Eastern Mediterranean city, Tripoli-Lebanon. The Egyptian Journal of Aquatic Research 44(4): 299–305. DOI: 10.1016/j.ejar.2018.11.004.

Kiron, V. 2012. Fish immune system and its nutritional modulation for preventive health care. Animal Feed Science and Technology 173(1−2): 111−133. DOI: 10.1016/j.anifeedsci.2011.12.015.

Kizmaz, V. 2021. Seasonal Variation of fatty acid composition of phospholipid subclasses in muscle tissue in male, Alburnus Mussulensis. Journal on Mathematic, Engineering and Natural Sciences (EJONS) 5(17): 32−43. DOI: 10.38063/ejons.373.

Khamcharoen, M., K. Panwanitdumrong, P. Chaivichoo, T. Leamkom, T. Jutagate, K. Payooha and U. Na-Nakorn. 2023. Reproductive parameters of Indian threadfin Alectis indicus in Andaman Sea, Thailand. Journal of Fisheries and Environment 47: 85–98.

Kokou, F., A. Vasilaki C. Nikoloudaki, A.B. Sari, V. Karalazos and E. Fountoulaki. 2021. Growth performance and fatty acid tissue profile in gilthead seabream juveniles fed with different phospholipid sources supplemented in low-fish meal diets. Aquaculture 544: 737052. DOI: 10.1016/j.aquaculture.2021.737052.

Korkmaz, C., Ö. Ay, A.E. Dönmez, B. Demirbağ and C. Erdem. 2020. Influence of lead on reproductive physiology and gonad and liver histology of female Cyprinus carpio. Thalassas: An International Journal of Marine Sciences 36(2): 597−606. DOI: 10.1007/s41208-020-00232-w.

Lazard, J., P. Cacot J. Slembrouck and M. Legendre. 2009. The fish farming of the Pangasiidae. Cahiers Agricultures 18(2−3): 164−173. DOI: 10.1684/agr.2009.0284.

Lee, S.M., I.G Jeon and J.Y. Lee. 2002. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli). Aquaculture 211(1–4): 227–239. DOI: 10.1016/S0044-8486(01)00880-8.

Lin, S.M., F.J. Li, B. Yuangsoi and S. Doolgindachbaporn. 2018. Effect of dietary phospholipid levels on growth, lipid metabolism, and antioxidative status of juvenile hybrid snakehead (Channa argus×Channa maculata). Fish Physiology and Biochemistry 44(1): 401–410. DOI: 10.1007/S10695-017-0443-3.

Lin, Z., F. Han, J. Lu, J. Guo, C. Qi, C. Wang and L. Chen. 2020. Influence of dietary phospholipid on growth performance, body composition, antioxidant capacity and lipid metabolism of Chinese mitten crab, Eriocheir sinensis. Aquaculture 516: 734653. DOI: 10.1016/j.aquaculture.2019.734653.

Liu, G., S. Ma, F. Chen, W. Gao W. Zhang and K. Mai. 2020. Effects of dietary lysolecithin on growth performance, feed utilization, intestinal morphology and metabolic responses of channel catfish (Ictalurus punctatus). Aquaculture Nutrition 26(2): 456−465. DOI: 10.1111/anu.13008.

Lubzens, E., G. Young, J. Bobe and J. Cerdà. 2010. Oogenesis in teleosts: how fish eggs are formed. General and Comparative Endocrinology 165(3): 367−389. DOI: 10.1016/j.ygcen.2009.05.022.

Martins, G., P. Diogo, T. Santos, E. Cabrita, W. Pinto, J. Dias and P.J. Gavaia. 2020b. Microdiet formulation with phospholipid modulate zebrafish skeletal development and reproduction. Zebrafish 17(1): 27−37. DOI: 10.1089/zeb.2019.1794.

Martins, G.P., B.S.M. Mazini, M.A.F. Campos, D.S. Oliveira and I.G. Guimarães. 2020a. Effect of replacing fish meal protein by crystalline amino acid and soy protein concentrate on growth, feed utilization, and metabolism of tambaqui Colossoma macropomum juveniles. Journal of the World Aquaculture Society 51(5): 1250–1269. DOI: 10.1111/jwas.12688.

Mendivil, C.O. 2021. Dietary fish, fish nutrients, and immune function: A review. Frontiers in Nutrition 7: 617652. DOI: 10.3389/fnut.2020.617652.

Nandi, S., P. Routray, S.D. Gupta, S.C. Rath, S. Dasgupta, P.K. Meher and P.K. Mukhopadhyay. 2007. Reproductive performance of carp, Catla catla (Ham.), reared on a formulated diet with PUFA supplementation. Journal of Applied Ichthyology 23(6): 684−691. DOI: 10.1111/j.1439-0426.2007.00874.x.

National Research Council (NRC). 2011. Nutrient Requirements of Fish and Shrimp. National Academies Press, Washington, D.C., USA. 392 pp.

Oddsdóttir, C., H.K. Jónsdóttir and E. Sturludóttir. 2023. Haematological reference intervals for pregnant Icelandic mares on pasture. Acta Veterinaria Scandinavica 65: 57. DOI: 10.1186/s13028-023-00721-x.

Okomoda, V. T., I.C.C. Koh, A. Hassan, T. Amornsakun and M.S. Shahreza. 2018. Performance and characteristics of the progenies from the reciprocal crosses of Pangasianodon hypophthalmus (Sauvage, 1878) and Clarias gariepinus (Burchell, 1822). Aquaculture 489: 96–104. DOI: 10.1016/j.aquaculture.2018.02.011.

Petersen, C.W. and R.R. Warner. 2002. The ecological context of reproductive behavior. Coral Reef Fishes 103–118. DOI: 10.1016/B978-012615185-5/50007-4.

Rahman, M.A., M.R.K. Manon, M.R. Ullah, A. Alam, M.J. Islam, M.A. Siddik and M.M. Iqbal. 2023. Biometric indices, growth pattern, and physiological status of captive-reared indigenous Yellowtail brood catfish, Pangasius pangasius (Hamilton, 1822). Environmental Science and Pollution Research 30(35): 83388−83400. DOI: 10.1007/s11356-023-28328-9.

Rizzo, E. and N. Bazzoli. 2020. Reproduction and embryogenesis. In: Biology and Physiology of Freshwater Neotropical Fish (eds. B. Baldisserotto, E.C. Urbinati and J.E.P. Cyrino), pp. 287−313. Academic Press. Cambridge, Massachusetts, United States. DOI: 10.1016/B978-0-12-815872-2.00013-0.

Salas‐Leiton, E., M. Conde‐Sieira, N. Pelusio, A. Marques, M.R.G. Maia, J.L. Soengas and L.M.P. Valente. 2018. Dietary protein/carbohydrate ratio in low‐lipid diets for Senegalese sole (Solea senegalensis, Kaup 1858) juveniles. Influence on growth performance, nutrient utilization and flesh quality. Aquaculture Nutrition 24(1): 131−142. DOI: 10.1111/anu.12541.

Sarih, S., A. Djellata, H. Fernández-Palacios, R. Ginés, R. Fontanillas, G. Rosenlund M. Izquierdo and J. Roo. 2020. Adequate n-3 LC-PUFA levels in broodstock diets optimize reproductive performance in GnRH injected greater amberjack (Seriola dumerili) equaling to spontaneously spawning broodstock. Aquaculture 520: 735007. DOI: 10.1016/j.aquaculture.2020.735007.

Sattang, S., D. Amornlerdpison, S. Tongsiri, D. Palić and K. Mengumphan. 2021. Effect of freshwater fish oil feed supplementation on the reproductive condition and production parameters of hybrid catfish (Pangasius larnaudii x Pangasianodon hypophthalmus, Sauvage, 1878) broodstock. Aquaculture Reports 20: 100598. DOI: 10.1016/J.AQREP.2021.100598.

Schlotz, N., J.G. Sørensen and D. Martin-Creuzburg. 2012. The potential of dietary polyunsaturated fatty acids to modulate eicosanoid synthesis and reproduction in Daphnia magna: a gene expression approach. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology 162(4): 449−454. DOI: 10.1016/j.cbpa.2012.05.004.

Sebastião, F.A., D. Nomura, R. Sakabe and F. Pilarski. 2011. Hematology and productive performance of Nile tilapia (Oreochromis niloticus) naturally infected with Flavobacterium columnare. Brazilian Journal of Microbiology 42: 282−289. DOI: 10.1590/S1517-83822011000100036.

Sink, T.D. and R.T. Lochmann. 2014. The effects of soybean lecithin supplementation to a practical diet formulation on juvenile channel catfish, Ictalurus punctatus: growth, survival, hematology, innate immune activity, and lipid biochemistry. Journal of the World Aquaculture Society 45(2): 163–172. DOI: 10.1111/jwas.12108.

Song, D., B. Shi, L. Ding, M. Jin, P. Sun, L. Jiao and Q. Zhou. 2019. Regulation of dietary phospholipids on growth performance, antioxidant activities, phospholipid metabolism and vitellogenesis in prereproductive phase of female swimming crabs, Portunus trituberculatus. Aquaculture 511: 734230. DOI: 10.1016/j.aquaculture.2019.734230.

Szlinder‐Richert, J., Z. Usydus, M. Wyszyński and M. Adamczyk. 2010. Variation in fat content and fatty‐acid composition of the Baltic herring Clupea harengus membras. Journal of Fish Biology 77(3): 585−599. DOI: 10.1111/j.1095-8649.2010.02696.x.

Tan, P., P. Zhang, L. Zhang, W. Zhu, L. Wang, R. Chen, Q. Zhu and D. Xu. 2022. Effects of soybean lecithin on growth performance, intestine morphology, and liver tissue metabolism in rock bream (Oplegnathus fasciatus) larvae. Frontiers in Marine Science 9: 942259. DOI: 10.3389/fmars.2022.942259.

Taylor, J.F., L. Martinez-Rubio, J. del Pozo, J.M. Walton, A.E. Tinch, H. Migaud and D.R. Tocher. 2015. Influence of dietary phospholipid on early development and performance of Atlantic salmon (Salmo salar). Aquaculture 448: 262−272. DOI: 10.1016/J.aquaculture.2015.06.012.

Tercero, J.F., C. Rosas, M. Mascaró, G. Poot, P. Domingues, E. Noreña, C. Caamal-Monsreal, C. Pascual, J. Estefanell and P. Gallardo. 2015. Effects of parental diets supplemented with different lipid sources on Octopus maya embryo and hatching quality. Aquaculture 448: 234−242. DOI: 10.1016/j.aquaculture.2015.05.023.

Tocher, D.R. 2003. Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science 11(2): 107−184. DOI: 10.1080/713610925.

Tocher, D.R. 2015. Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture 449: 94–107. DOI: 10.1016/j.aquaculture.2015.01.010.

Torsabo, D., S.D. Ishak, N.M. Noordin, I.C.C. Koh, M.Y. Abduh, B.T. Iber, M.K. Kuah and A.B. Munafi. 2022. Enhancing reproductive performance of freshwater finfish species through dietary lipids. Aquaculture Nutrition 2022: 7138012 DOI: 10.1155/2022/7138012.

Torsabo, D., B.T. Iber, N. Idris, V.T. Okomoda, I.C.C. Koh, M.Y. Abduh, N.M. Noordin and A.B. Abol-Munafi. 2023. Phospholipid-supplemented diet impacts on growth, blood metrics, reproductive indices, and fatty acid profiles of Pangasianodon hypopthalmus. Aquaculture Reports 33: 101802. DOI: 10.1016/j.aqrep.2023.101802.

Torsabo, D., G.A. Ataguba, B.T. Iber, N.M. Noordin, N. Idris, I.C.C. Koh and A.B. Abol-Munafi. 2024. Comparative investigation of biological indices and biochemical compounds of reproductive indicators in male and female Pangasius nasutus. Biodiversitas Journal of Biological Diversity 25(9): 3105–3115 DOI: 10.13057/biodiv/d250932.

Turchini, G.M., B.E. Torstensen and W.K. Ng. 2009. Fish oil replacement in finfish nutrition. Reviews in Aquaculture 1(1): 10−57. DOI: 10.1111/j.1753-5131.2008.01001.x.

Turchini, G.M., D.S. Francis, Z.Y. Du, R.E. Olsen, E. Ringø and D.R. Tocher. 2022. The lipids. In: Fish Nutrition (eds. R.W. Hardy and S.J. Kaushik), pp. 303–467. Academic Press. Cambridge, Massachusetts, United States. DOI: 10.1016/B978-0-12-819587-1.00003-3.

Uyan, O., S. Koshio, M. Ishikawa, S. Yokoyama, S. Uyan, T. Ren and L.H.H. Hernandez. 2009. The influence of dietary phospholipid level on the performances of juvenile amberjack, Seriola dumerili, fed non-fishmeal diets. Aquaculture Nutrition 15(5): 550–557. DOI: 10.1111/J.1365-2095.2008.00621.X.

Wang, J., H. Zhang, X. Chen, Y. Chen and Q. Bao. 2012. Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. Journal of Dairy Science 95(4): 1645−1654. DOI: 10.3168/jds.2011-4768.

Wang, L., D. Zuo, W. Lv, J. Li, Q. Wang and Y. Zhao. 2013. Effects of dietary soybean lecithin on gonadal development and vitellogenin mRNA expression in the female redclaw crayfish Cherax quadricarinatus (von M artens) at first maturation. Aquaculture Research 44(8): 1167−1176. DOI: 10.1111/j.1365-2109.2012.03128.x.

Wang, Z., E. Karrar, Y. Wang R. Liu, M. Chang and X. Wang. 2022. The bioactive of four dietary sources phospholipids on heavy metal-induced skeletal muscle injury in zebrafish: A comparison of phospholipid profiles. Food Bioscience 47: 101630. DOI: 10.1016/j.fbio.2022.101630.

Wathes, D.C., D.R.E. Abayasekara and R.J. Aitken. 2007. Polyunsaturated fatty acids in male and female reproduction. Biology of Reproduction 77(2): 190−201. DOI: 10.1095/biolreprod.107.060558.

Wee, W., G. Téllez-Isaías, Z. Abdul Kari, R. Cheadoloh, M.A. Kabir, K. Mat, S.A. Mohamad Sukri, M.M. Rahman, N.D. Rusli and L.S. Wei. 2023. The roles of soybean lecithin in aquafeed: a crucial need and update. Frontiers in Veterinary Science 10: 1188659. DOI: 10.3389/fvets.2023.1188659.

Witeska, M., E. Kondera, K. Ługowska and B. Bojarski. 2022. Hematological methods in fish–Not only for beginners. Aquaculture 547: 737498. DOI: 10.1016/j.aquaculture.2021.737498.

Witeska, M., K. Lugowska and E. Kondera. 2016. Reference values of hematological parameters for juvenile Cyprinus carpio. Bulletin of the European Association of Fish Pathologists 36(4): 169−180.

Yang, Z., C. Guo, S. Xie, Y. Zhang, T. Zhu, W. Zhao, J. Luo, M. Jin and Q. Zhou. 2022. Interactive effects of dietary cholesterol and phospholipids on growth and metabolism of juvenile swimming crab, Portunus trituberculatus. Animal Feed Science and Technology 294: 115484. DOI: 10.1016/j.anifeedsci.2022.115484.

Yeldan, H. and D. Avşar. 2000. A preliminary study on the reproduction of the rabbitfish (Siganus rivulatus (Forsskal, 1775)) in the northeastern Mediterranean. Turkish Journal of Zoology 24(2): 173−182.

Yıldız, M., S. Ofori-Mensah, M. Arslan, A. Ekici, G. Yamaner, M.A. Baltacı, S. Tacer and F. Korkmarz. 2020. Effects of different dietary oils on egg quality and reproductive performance in rainbow trout Oncorhynchus mykiss. Animal Reproduction Science 221: 106545. DOI: 10.1016/j.anireprosci.2020.106545.

Yoo, G.Y., I.S. Park and S. Lee. 2022. Effects of graded dietary lipid levels on growth performance, fatty acid profile, and hematological characteristics of hybrid pufferfish (Takifugu obscurusx T. rubripes) juveniles. Aquaculture Reports 24: 101120. DOI: 10.1016/j.aqrep.2022.101120.

Zargar, A., Z. Rahimi‐Afzal, E. Soltani, A. Taheri Mirghaed, H.A. Ebrahimzadeh‐Mousavi, M. Soltani and P. Yuosefi. 2019. Growth performance, immune response and disease resistance of rainbow trout (Oncorhynchus mykiss) fed Thymus vulgaris essential oils. Aquaculture Research 50(11): 3097−3106.DOI: 10.1111/are.14243.

Zhao, J., Q. Ai, K. Mai, R. Zuo and Y. Luo. 2013. Effects of dietary phospholipids on survival, growth, digestive enzymes and stress resistance of large yellow croaker, Larmichthys crocea larvae. Aquaculture 410: 122−128. DOI: 10.1016/j.aquaculture.2013.05.018.

Zuo, R., Y. Ning, W. Di, Y. Heqiu, J. Song, J. Ding and Y. Chang. 2022. Effects of dietary lipid sources on the growth, gonad development, fatty acid composition and spawning performance of broodstock, and early larvae quality of sea urchin (Strongylocentrotus intermedius). Frontiers in Marine Science 9: 927116. DOI: 10.3389/fmars.2022.927116.