Effect of Bisphenol A on Expression of Estrogen-, Retinoid- and Thyroid Hormone-Related Genes in the Green Catfish (Mystus nemurus)

Main Article Content

Ladda Leelawatwattana
Peasala Sokul
Jiraporn Khwanmunee

Abstract

The impact of bisphenol A (BPA), a chemical known for its endocrine-disrupting ability, has been investigated in various fish species. This study aimed to examine the effect of BPA on the expression of genes associated with estrogen, retinoid, and thyroid hormones in green catfish (Mystus nemurus). The isolated cDNA fragments, which were 414, 319, 445, and 366 base pairs in length, exhibited significant similarity to brain cytochrome P450 aromatase (cyp19b), transglutaminase-2 (tgase-2), deiodinase type III (dio3), and thyroid hormone receptor alpha (trα), respectively. When translated into amino acids, these cDNA fragments corresponded to approximately 30%, 15%, 55%, and 30% of the full-length length P450AromB, TGase-2, Dio3, and TRα proteins in different fish species, respectively. At 15 days post-hatching, green catfish were exposed to BPA at concentrations of 0.01, 10, 100, and 1,000 nM for three days. The expression of cyp19 decreased compared to the control group when fish were exposed to BPA at 0.01 and 10 nM. The mRNA expression levels of tgase and tr also decreased across all treatment groups compared to the control group. However, no significant changes were observed in the expression of dio across the investigated doses. The study's findings indicate that exposure to BPA at ecologically relevant concentrations leads to changes in gene expression in green catfish.

Article Details

How to Cite
Leelawatwattana, L., Sokul, P. ., & Khwanmunee, J. . (2024). Effect of Bisphenol A on Expression of Estrogen-, Retinoid- and Thyroid Hormone-Related Genes in the Green Catfish (Mystus nemurus) . Journal of Fisheries and Environment, 48(3), 17–32. Retrieved from https://li01.tci-thaijo.org/index.php/JFE/article/view/262619
Section
Research Article

References

Aluru, N., J.F. Leatherland and M.M. Vijayan. 2010. Bisphenol A in oocytes leads to growth suppression and altered stress performance in juvenile rainbow trout. PLoS One 5(5): e10741. DOI: 10.1371/journal.pone.0010741.

Aniche, D.C., F.V. Oluwale and B.O. Ogbolu. 2019. Effect of exposure to sub-lethal potassium cyanide on growth rate, survival rate, and histopathology in juvenile Heteroclarias (Heterobranchus longifilis x Clarias gariepinus). Journal of Fisheries and Environment 43(1): 1–10.

Bhandari, R.K., S.L. Deem, D.K. Holliday, C.M. Jandegian, C.D. Kassotis, S.C. Nagel, D.E. Tillitt, F.S. vom Saal and C.S. Rosenfeld. 2015. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. General and Comparative Endocrinology 214: 195–219.

Bondesson, M., R. Hao, C.Y. Lin, C. Williams and J.Å. Gustafsson. 2015. Estrogen receptor signaling during vertebrate development. Biochimica et Biophysica Acta 1849(2): 142–151.

Boon, W.C., J.D.Y. Chow and E.R. Simpson. 2010. The multiple roles of estrogens and the enzyme aromatase. Progress in Brain Research 181: 209–232.

Boonphakdee, C., Y. Ocharoen, A.P. Shinn, S. Suanla and J. Thamnawasolos. 2019. 18S rRNA, a potential reference gene in the qRT-PCR measurement of bisphenol A contamination in green mussels (Perna viridis) collected from the Gulf of Thailand. Agriculture and Natural Resources 53: 652–661.

Caballero-Gallardo, K., J. Olivero-Verbel and J.L. Freeman. 2016. Toxicogenomics to evaluate endocrine disrupting effects of environmental chemicals using the zebrafish model. Current Genomics 17(6): 515–527.

Chan, W.K. and K.M. Chan. 2012. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA. Aquatic Toxicology 108: 106–111.

Chen, Q.L., Z. Luo, X.Y. Tan, Y.X. Pan, J.L. Zheng and M. Zou. 2014. Molecular cloning and mRNA tissue expression of thyroid hormone receptors in yellow catfish Pelteobagrus fulvidraco and Javelin goby Synechogobius hasta. Gene 536(2): 232–237.

Chung, E., M.C. Genco, L. Megrelis and J.V. Ruderman. 2011. Effects of bisphenol A and triclocarban on brain-specific expression of aromatase in early zebrafish embryos. Proceedings of the National Academy of Sciences of the United States of America 108(43): 17732–17737.

Crain, D.A., M. Eriksen, T. Iguchi, S. Jobling, H. Laufer, G.A. LeBlanc and L.J. Guillette Jr. 2007. An ecological assessment of bisphenol-A: evidence from comparative biology. Reproductive Toxicology 24(2): 225–239.

Darras, V.M. and S.L. Van Herck. 2012. Iodothyronine deiodinase structure and function: from ascidians to humans. Journal of Endocrinology 215(2): 189–206.

Deemoon, S., C. Sarin, G. Ying, C. Kritsunankul and S. Sriprang. 2016. Occurrence of endocrine disrupting chemicals (EDCs) and estrogenic activity in the Nan River, Phitsanulok, Thailand. EnvironmentAsia 9(1): 84–91.

Drastichová, J., Z. Svobodová, M. Groenland, R. Dobšíková, V. Žlábek, D. Weissová and M. Szotkowská. 2005. Effect of exposure to bisphenol A and 17ß-estradiol on the sex differentiation in zebrafish (Danio rerio). Acta Veterinaria Brno 74: 287–291.

Eckert, R.L., M.T. Kaartinen, M. Nurminskaya, A.M. Belkin, G. Colak, G.V.W. Johnson and K. Mehta. 2014. Transglutaminase regulation of cell function. Physiological Reviews 94(2): 383–417.

Elizalde-Velázquez, G.A., L.M. Gómez-Oliván, S.E. Herrera-Vázquez, K.E. Rosales-Pérez, N. SanJuan-Reyes, S. García-Medina and M. Galar-Martínez. 2023. Acute exposure to realistic concentrations of bisphenol A trigger health damage in fish: blood parameters, gene expression, oxidative stress. Aquatic Toxicology 261: 106610. DOI: 10.1016/j.aquatox.2023.106610.

Faheem, M. and R.K. Bhandari. 2021. Detrimental effects of bisphenol compounds on physiology and reproduction in fish: a literature review. Environmental Toxicology and Pharmacology 81: 103497. DOI: 10.1016/j.etap.2020.103497.

Flint, S., T. Markle, S. Thompson and E. Wallace. 2012. Bisphenol A exposure, effects, and policy: a wildlife perspective. Journal of Environmental Management 104: 19–34.

Furnes, C., Ø. Kileng, I. Jensen, P. Karki, L. Eichacker and B. Robertsen. 2014. Isolation and characterization of two cDNAs encoding transglutaminase from Atlantic cod (Gadus morhua). Fish and Shellfish Immunology 36(1): 276–283.

Gorini, F., E. Bustaffa, A. Coi, G. Iervasi and F. Bianchi. 2020. Bisphenols as environmental triggers of thyroid dysfunction: Clues and evidence. International Journal of Environmental Research and Public Health 17(8): 2654. DOI: 10.3390/ijerph17082654.

Guiguen, Y., A. Fostier, F. Piferrer and C.F. Chang. 2010. Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. General and Comparative Endocrinology 165(3): 352–366.

Horie, Y., N. Kanazawa, C. Takahashi, N. Tatarazako and T. Iguchi. 2020. Bisphenol A induces a shift in sex differentiation gene expression with testis-ova or sex reversal in Japanese medaka (Oryzias latipes). Journal of Applied Toxicology 40(6): 804–814.

Ichinose, A., R.E. Bottenus and E.W. Davie. 1990. Structure of transglutaminases. Journal of Biological Chemistry 265(23): 13411–13414.

Iwamuro, S., M. Yamada, M. Kato and S. Kikuyama. 2006. Effects of bisphenol A on thyroid hormone-dependent up-regulation of thyroid hormone receptor alpha and beta and down-regulation of retinoid X receptor gamma in Xenopus tail culture. Life Sciences 79(23): 2165–2171.

Jones, R.A., W.B. Cohn, T.C. Miller, J.T. Jaques and D.S. Mackenzie. 2013. Cyclic mRNA expression of thyrotropin subunits and deiodinases in red drum, Sciaenops ocellatus. General and Comparative Endocrinology 194: 248–256.

Joseph, B., O. Lefebvre, C. Méreau-Richard, P.M. Danzé, M.T. Belin-Plancot and P. Formstecher. 1998. Evidence for the involvement of both retinoic acid receptor- and retinoic X receptor-dependent signaling pathways in the induction of tissue transglutaminase and apoptosis in the human myeloma cell line RPMI 8226. Blood 91(7): 2423–2432.

Kang, J.H., D. Asai and Y. Katayama. 2007. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Critical Reviews in Toxicology 37(7): 607–625.

Kawakami, Y., M. Tanda, S. Adachi and K. Yamauchi. 2003. Characterization of thyroid hormone receptor alpha and beta in the metamorphosing Japanese conger eel, Conger myriaster. General and Comparative Endocrinology 132(2): 321–332.

Kazeto, Y., S. Ijiri, A.R. Place, Y. Zohar and J.M. Trant. 2001. The 5'- flanking regions of CYP19A1 and CYP19A2 in zebrafish. Biochemical and Biophysical Research Communications 288(3): 503–508.

Kazeto, Y. and J.M. Trant. 2005. Molecular biology of channel catfish brain cytochrome P450 aromatase (CYP19A2): cloning, preovulatory induction of gene expression, hormonal gene regulation and analysis of promoter region. Journal of Molecular Endocrinology 35(3): 571–583.

Kishida, M. and G.V. Callard. 2001. Distinct cytochrome P450 aromatase isoforms in zebrafish (Danio rerio) brain and ovary are differentially programmed and estrogen regulated during early development. Endocrinology 142(2): 740–750.

Kolpin, D.W., E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber and H.T. Buxton. 2002. Pharmaceutical, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000 a national reconnaissance. Environmental Science and Technology 36(6): 1202–1211.

Lahnsteiner, F., B. Berger, M. Kletzl and T. Weismann. 2005. Effect of bisphenol A on maturation and quality of semen and eggs in the brown trout, Salmo trutta f. fario. Aquatic Toxicology 75(3): 213–224.

Lee, H.B. and T.E. Peart. 2000. Bisphenol A contamination in Canadian municipal and industrial wastewater and sludge samples. Water Quality Research Journal 35(2): 283–298.

Leelawatwattana, L. 2003. Effect of thyroid hormones on early development of green catfish (Mystus nemurus). Master Thesis, Prince of Songkla University, Songkhla, Thailand. 118 pp.

Lisetto, M., M. Fattorini, A. Lanza, M. Gerdol, M. Griffin, Z. Wang, F. Ferrara and D. Sblattero. 2023. Biochemical and functional characterization of the three zebrafish transglutaminases 2. International Journal of Molecular Sciences 24(15): 12041. DOI: 10.3390/ijms241512041.

Mesomya, W., Y. Cuptapun, P. Jittanoonta, D. Hengsawadi, S. Boonvisut, P. Huttayanon and W. Sriwatana. 2002. Nutritional evaluations of green catfish, Mystus nemurus. Agriculture and Natural Resources 36(1): 69–74.

Moriyama, K., T. Tagami, T. Akamizu, T. Usui, M. Saijo, N. Kanamoto, Y. Hataya, A. Shimatsu, H. Kuzuya and K. Nakao. 2002. Thyroid hormone action is disrupted by bisphenol A as an antagonist. The Journal of Clinical Endocrinology and Metabolism 87(11): 5185–5190.

Mouriec. K., J.J. Lareyre, S.K. Tong, Y. Le Page, C. Vaillant, E. Pellegrini, F. Pakdel, B.C. Chung, O. Kah and I. Anglade. 2009. Early regulation of brain aromatase (cyp19a1b) by estrogen receptors during zebrafish development. Developmental Dynamics 238(10): 2641–2651.

Nelson, E.R. and H.R. Habibi. 2006. Molecular characterization and sex-related seasonal expression of thyroid receptor subtypes in goldfish. Molecular and Cellular Endocrinology 253(1–2): 83–95.

Nelson, E.R. and H.R. Habibi. 2009. Thyroid receptor subtypes: structure and function in fish. General and Comparative Endocrinology 161(1): 90–96.

Nguyen, L.T. and C.R. Janssen. 2001. Comparative sensitivity of embryo-larval toxicity assays with African catfish (Clarias gariepinus) and zebra fish (Danio rerio). Environmental Toxicology 16(6): 566–571.

Nishizawa, H., N. Manabe, M. Morita, M. Sugimoto, S. Imanishi and H. Miyamoto. 2003. Effects of in utero exposure to bisphenol A on expression of RARalpha and RXRalpha mRNAs in murine embryos. Journal of Reproduction and Development 49(6): 539–545.

Niu, Y., M. Zhu, M. Dong, J. Li, Y. Li, Y. Xiong, P. Liu and Z. Qin. 2021. Bisphenols disrupt thyroid hormone (TH) signaling in the brain and affect TH-dependent brain development in Xenopus laevis. Aquatic Toxicology 237: 105902. DOI: 10.1016/j.aquatox.2021.105902.

Nurminskaya, M.V. and A.M. Belkin. 2012. Cellular functions of tissue transglutaminase. International Review of Cell and Molecular Biology 294: 1–97.

Orozco, A. and C. Valverde-R. 2005. Thyroid hormone deiodination in fish. Thyroid 15(8): 799–813.

Osman, A.G., S. Wuertz, I.A. Mekkawy, H.J. Exner and F. Kirschbaum. 2007. Lead induced malformations in embryos of the African catfish Clarias gariepinus (Burchell, 1822). Environmental Toxicology 22(4): 375–389.

Pfaffl, M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29(9): e45. DOI: 10.1093/nar/29.9.e45.

Piferrer, F. and M. Blázquez. 2005. Aromatase distribution and regulation in fish. Fish Physiology and Biochemistry 31: 215–226.

Pookpoosa, I., R. Jindal, D. Morknoy and K. Tantrakarnapa. 2014. Occurrence of bisphenol A in some municipal wastewater treatment plants’ effluents in Bangkok region. International Journal of Advances in Agricultural and Environmental Engineering 1(1): 116–120.

Rasheeda, M.K., P. Sridevi and B. Senthilkumaran. 2010. Cytochrome P450 aromatases: impact on gonadal development, recrudescence and effect of hCG in the catfish, Clarias gariepinus. General and Comparative Endocrinology 167(2): 234–245.

Robitaille, J., N.D. Denslow, B.I. Escher, et al. 2022. Towards regulation of endocrine disrupting chemicals (EDCs) in water resources using bioassays - A guide to developing a testing strategy. Environmental Research 205: 112483. DOI: 10.1016/j.envres.2021.112483.

Ross, S.A., P.J. McCaffery, U.C. Drager and L.M. De Luca. 2000. Retinoids in embryonal development. Physiological Reviews 80(3): 1021–1054.

Routledge, E.J., R. White, M.G. Parker and J.P. Sumpter. 2000. Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta. Journal of Biological Chemistry 46: 35986–35993.

Sanders, J.P., S. Van der Geyten, E. Kaptein, V.M. Darras, E.R. Kühn, J.L. Leonard and T.J. Visser. 1999. Cloning and characterization of type III iodothyronine deiodinase from the fish Oreochromis niloticus. Endocrinology 140(8): 3666–3673.

Sayed, A.E.D.H., U.M. Mahmoud and I. Mekkawy. 2012. Toxic effects of 4-nonylphenol on the embryonic development of African catfish Clarias gariepinus (Burchell, 1822). International Journal of Biology and Biological Sciences 1(2): 34–46.

Shanthanagouda, A.H., D. Nugegoda and J.G. Patil. 2014. Effects of bisphenol A and fadrozole exposures on cyp19a1 expression in the Murray rainbowfish, Melanotaenia fluviatilis. Archives of Environmental Contamination and Toxicology 67(2): 270–280.

Shmarakov, I.O. 2015. Retinoid-xenobiotic interactions: the ying and the yang. HepatoBiliary Surgery and Nutrition 4(4): 243–267.

Sternberg, H. and B. Moav. 1999. Regulation of the growth hormone gene by fish thyroid/retinoid receptors. Fish Physiology and Biochemistry 20: 331–339.

Vandenberg, L.N. 2013. Non-monotonic dose responses in studies of endocrine disrupting chemicals: bisphenol A as a case study. Dose Response 12(2): 259–276.

Wang, J., X. Liu, H. Wang, T. Wu, X. Hu, F. Qin and Z. Wang. 2010. Expression of two cytochrome P450 aromatase genes is regulated by endocrine disrupting chemicals in rare minnow Gobiocypris rarus juveniles. Comparative Biochemistry and Physiology Part C Toxicology and Pharmacology 152(3): 313–320.

Welshons, W.V., K.A. Thayer, B.M. Judy, J.A. Taylor, E.M. Curran and F.S. vom Saal. 2003. Large effects from small exposures. I. mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environmental Health Perspectives 111(8): 994–1006.

Welshons, W.V., S.C. Nagel and F.S. vom Saal. 2006. Large effects from small exposures. III. endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147: 56–69.

Yamano, K. 2005. The role of thyroid hormone in fish development with reference to aquaculture. Japan Agricultural Research Quarterly 39(3): 161–168.

Yasueda, H., K. Nakanishi, Y. Kumazawa, K. Nagase, M. Motoki and H. Matsui. 1995. Tissue- type transglutaminase from red sea bream (Pagrus major). Sequence analysis of the cDNA and functional expression in Escherichia coli. European Journal of Biochemistry 232(2): 411–419.

Yee, V.C., L.C. Pedersen, I.L. Trong, P.D. Bishop, R.E. Stenkamp and D.C. Teller. 1994. Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proceedings of the National Academy of Sciences of the United States of America 91(15): 7296–7300.

Zhang, D.H., E.X. Zhou and Z.L. Yang. 2017. Waterborne exposure to BPS causes thyroid endocrine disruption in zebrafish larvae. PLoS One 12(5): e0176927. DOI: 10.1371/journal.pone.0176927.

Zhang, Y.F., X.M. Ren, Y.Y. Li, X.F. Yao, C.H. Li, Z.F. Qin and L.H. Guo. 2018. Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo. Environmental Pollution 237: 1072–1079.