Kefir: Biotechnology from “~omics” Perspectives

Main Article Content

Sarn Settachaimongkon
Aunchisa Kuntaveesuk

Abstract

ปัจจุบันได้มีการนำวิทยาศาสตร์และเทคโนโลยีโอมิกส์ (omics sciences and technology) ได้แก่ จีโนมิกส์ (genomics) ทรานสคริปโตมิกส์ (transcriptomics) โปรตีโอมิกส์ (proteomics) และเมตาโบโลมิกส์ (metabolomics) มาประยุกต์ใช้ในการศึกษาวิจัยทางด้านการเกษตรและอาหาร (foodomics) รวมทั้งการศึกษาด้านจุลชีววิทยาของผลิตภัณฑ์อาหารหมัก (fermented food) ในบทความวิชาการนี้จึงขอเสนอรูปแบบของการประยุกต์ใช้เทคโนโลยีดังกล่าว เพื่อศึกษาองค์ประกอบและพลวัตของประชากรจุลินทรีย์และชีวโมเลกุลในผลิตภัณฑ์นมเปรี้ยวคีเฟอร์ ซึ่งเป็นผลผลิตจากกิจกรรมทางเมตาบอลิซึมของจุลินทรีย์กล้าเชื้อผสม (mixed culture fermentation) ระหว่างแบคทีเรียกรดแลคติก แบคทีเรียกรดอะซีติก และยีสต์ โดยมีวัตถุประสงค์เพื่อให้เกิดความเข้าใจในลักษณะแบบองค์รวม (holistic approach) ครอบคลุมตั้งแต่ระดับโครงสร้างของสารพันธุกรรมและหน้าที่ของยีนทั้งหมดในจีโนม การแสดงออกของยีนและการสังเคราะห์โปรตีนเพื่อตอบสนองต่อการเปลี่ยนแปลงของสภาวะแวดล้อมและความเครียดจากปัจจัยต่างๆ ในระหว่างกระบวนการหมัก ปฏิสัมพันธ์ระหว่างประชากรจุลินทรีย์ที่อยู่ร่วมในระบบอาหารเดียวกัน รวมทั้งกิจกรรมทาง เมตาบอลิซึมเพื่อย่อยสลายสารอาหารที่เป็นองค์ประกอบในน้ำนมและการสังเคราะห์สารเมตาบอไลต์ที่ส่งผลต่อสมบัติทางกายภาพ ทางเคมี คุณภาพทางประสาทสัมผัส คุณค่าทางโภชนาการ สมบัติเชิงหน้าที่ และความปลอดภัยของผลิตภัณฑ์ ซึ่งก่อให้เกิดการพัฒนาองค์ความรู้ใหม่ด้านวิทยาศาสตร์และเทคโนโลยีการอาหารในยุคหลังการสำรวจจีโนม หรือ “Post Genomic Era” ที่จำเป็นต้องอาศัยการบูรณาการของนักวิจัยที่มีความเชี่ยวชาญระหว่างศาสตร์ในหลากหลายสาขาเข้าด้วยกัน

Downloads

Download data is not yet available.

Article Details

How to Cite
Settachaimongkon, S., & Kuntaveesuk, A. (2018). Kefir: Biotechnology from “~omics” Perspectives. Journal of Food Technology, Siam University, 13(1), 1–18. Retrieved from https://li01.tci-thaijo.org/index.php/JFTSU/article/view/106806
Section
บทความวิชาการ (Academic Article)

References

[1] Rosa, D.D., Dias, M.M.S., Grzeskowiak, Ł.M., Reis, S.A., Conceição, L.L., and Peluzio, M.D.C.G. (2017). Milk kefir: nutritional, microbiological and health benefits. Nutrition Research Reviews. 1-15.
[2] Kesenkaş, H., Gürsoy, O., and Özbaş, H., (2017). Kefir. In: C. Martinez-Villaluenga and E. Peñas, (ed.), Fermented Foods in Health and Disease Prevention, Academic Press: Boston. pp. 339-361.
[3] Bourrie, B.C., Willing, B.P., and Cotter, P.D. (2016). The microbiota and health promoting characteristics of the fermented beverage kefir. Frontiers in Microbiology. 7: 647.
[4] CODEX. CODEX STAN 243-2003: Standard for fermented milks. 2003 [cited 2012 November 3, 2012]; revised in 2010:[Available from: http://www.fao.org/docrep/015/i2085e/i2085e00.pdf.
[5] Baschali, A., Tsakalidou, E., Kyriacou, A., Karavasiloglou, N., and Matalas, A.L. (2017). Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group. Nutrition Research Reviews. 30(1): 1-24.
[6] Sarkar, S. (2008). Biotechnological innovations in kefir production: A review. British Food Journal. 110(3): 283-295.
[7] Dertli, E. and Çon, A.H. (2017). Microbial diversity of traditional kefir grains and their role on kefir aroma. LWT - Food Science and Technology. 85: 151-157.
[8] Simova, E., Simov, Z., Beshkova, D., Frengova, G., Dimitrov, Z., and Spasov, Z. (2006). Amino acid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them. International Journal of Food Microbiology. 107(2): 112-123.
[9] Hertzler, S.R. and Clancy, S.M. (2003). Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. Journal of the American Dietetic Association. 103(5): 582-587.
[10] FAO/WHO. Guidelines for the evaluation of probiotics in food: Report of a joint FAO (Food and Agriculture Organization of the United Nations)/WHO (World Health Organization) working group on drafting guidelines for the evaluation of probiotics in food. 2002 [cited 2013 May 31, 2013]; Available from: ftp://ftp.fao.org/es/esn/food/wgreport2.pdf.
[11] Ahmed, Z., Wang, Y., Ahmad, A., Khan, S.T., Nisa, M., Ahmad, H., and Afreen, A. (2013). Kefir and health: A contemporary perspective. Critical Reviews in Food Science and Nutrition. 53(5): 422-434.
[12] Shiby, V.K. and Mishra, H.N. (2013). Fermented milks and milk products as functional foods: A review. Critical Reviews in Food Science and Nutrition. 53(5): 482-496.
[13] Kim, D.H., Jeong, D., Kim, H., Kang, I.B., Chon, J.W., Song, K.Y., and Seo, K.H. (2016). Antimicrobial activity of kefir against various food pathogens and spoilage bacteria. Korean Journal for Food Science of Animal Resources. 36(6): 787-790.
[14] ศิริรัตน์ ดีศีลธรรม (2555). คีเฟอร์ (บัวหิมะ) ผลิตภัณฑ์นมหมักจากจุลินทรีย์หลายชนิด. วารสารวิทยาศาสตร์ มข. . 40(2): 366-379.
[15] ปิ่นมณี ขวัญเมือง (2550). คีเฟอร์: อาหารสุขภาพจากผลิตภัณฑ์นมหมัก. วารสารครุศาสตร์อุตสาหกรรม. 6(6): 152-160.
[16] Luang-In, V. and Deeseenthum, S. (2016). Exopolysaccharide-producing isolates from Thai milk kefir and their antioxidant activities. LWT - Food Science and Technology. 73: 592-601.
[17] Powthong, P. and Suntornthiticharoen, P. (2015). Isolation, identification and analysis of probiotic properties of lactic acid bacteria from selective various traditional Thai fermented food and kefir. Pakistan Journal of Nutrition. 14(2): 67-74.
[18] Mozzi, F., Ortiz, M.E., Bleckwedel, J., De Vuyst, L., and Pescuma, M. (2013). Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Research International. 54(1): 1152-1161.
[19] Ren, S., Hinzman, A.A., Kang, E.L., Szczesniak, R.D., and Lu, L.J. (2015). Computational and statistical analysis of metabolomics data. Metabolomics. 11(6): 1492-1513.
[20] ศานต์ เศรษฐชัยมงคล และ มยุรี เหลืองวิลัย (2560). การประยุกต์ใช้เทคโนโลยีเมตาโบโลมิกส์ในการศึกษาข้อมูลแบบแผนทางชีวโมเลกุลของน้ำนมและผลิตภัณฑ์นม. วารสารเทคโนโลยีการอาหาร มหาวิทยาลัยสยาม. 12(1): 1-16.
[21] Ibáñez, E. and Cifuentes, A. (2014). Foodomics: Food science and nutrition in the postgenomic era. Comprehensive Analytical Chemistry. 64: 395-440.
[22] Cifuentes, A., (2013). Foodomics: Principles and Applications. In: A. Cifuentes, Editor, Foodomics: Advanced Mass Spectrometry in Modern Food Science and Nutrition. pp. 1-13.
[23] Chen, G., Chen, C., and Lei, Z. (2017). Meta-omics insights in the microbial community profiling and functional characterization of fermented foods. Trends in Food Science and Technology. 65: 23-31.
[24] Kergourlay, G., Taminiau, B., Daube, G., and Champomier Vergès, M.C. (2015). Metagenomic insights into the dynamics of microbial communities in food. International Journal of Food Microbiology. 213: 31-39.
[25] Smid, E.J. and Lacroix, C. (2013). Microbe–microbe interactions in mixed culture food fermentations. Current Opinion in Biotechnology. 24(2): 148-154.
[26] Gandhi, A. and Shah, N.P. (2017). Integrating omics to unravel the stress-response mechanisms in probiotic bacteria: Approaches, challenges, and prospects. Critical Reviews in Food Science and Nutrition. 57(16): 3464-3471.
[27] Walsh, A.M., Crispie, F., Claesson, M.J., and Cotter, P.D. (2017). Translating omics to food microbiology. Annual Review of Food Science and Technology. 8: 113-134.
[28] Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., and Tuohy, K. (2017). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition. 1-24.
[29] Sánchez, B., Ruiz, L., Gueimonde, M., and Margolles, A. (2013). Omics for the study of probiotic microorganisms. Food Research International. 54(1): 1061-1071.
[30] Xu, Y.J. and Wu, X. (2015). Foodomics in microbiological investigations. Current Opinion in Food Science. 4: 51-55.
[31] Alkema, W., Boekhorst, J., Wels, M., and Van Hijum, S.A.F.T. (2016). Microbial bioinformatics for food safety and production. Briefings in Bioinformatics. 17(2): 283-292.
[32] Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S.D., and Sorokin, A. (2001). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Research. 11(5): 731-753.
[33] Mayo, B., Rachid, C.T.C.C., Alegría, Á., Leite, A.M.O., Peixoto, R.S., and Delgado, S. (2014). Impact of next generation sequencing techniques in food microbiology. Current Genomics. 15(4): 293-309.
[34] Wang, Y., Wang, J., Ahmed, Z., Bai, X., and Wang, J. (2011). Complete genome sequence of Lactobacillus kefiranofaciens ZW3. Journal of Bacteriology. 193(16): 4280-4281.
[35] อัชฌา บุญมี (2556). เมตาจีโนมิกส์: เปิดโลกแห่งจีโนมจุลินทรีย์ในธรรมชาติ. วารสารวิทยาศาสตร์และเทคโนโลยี. 21(1): 71-82.
[36] De Filippis, F., Parente, E., and Ercolini, D. (2017). Metagenomics insights into food fermentations. Microbial Biotechnology. 10(1): 91-102.
[37] Kesmen, Z. and Kacmaz, N. (2011). Determination of lactic microflora of kefir grains and kefir beverage by using culture-dependent and culture-independent methods. Journal of Food Science. 76(5): M276-M283.
[38] Chen, H.C., Wang, S.Y., and Chen, M.J. (2008). Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiology. 25(3): 492-501.
[39] Garofalo, C., Osimani, A., Milanović, V., Aquilanti, L., De Filippis, F., Stellato, G., Di Mauro, S., Turchetti, B., Buzzini, P., Ercolini, D., and Clementi, F. (2015). Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiology. 49(1): 123-133.
[40] Leite, A.M.O., Mayo, B., Rachid, C.T.C.C., Peixoto, R.S., Silva, J.T., Paschoalin, V.M.F., and Delgado, S. (2012). Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiology. 31(2): 215-221.
[41] Dobson, A., O'Sullivan, O., Cotter, P.D., Ross, P., and Hill, C. (2011). High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiology Letters. 320(1): 56-62.
[42] Gao, J., Gu, F., He, J., Xiao, J., Chen, Q., Ruan, H., and He, G. (2013). Metagenome analysis of bacterial diversity in Tibetan kefir grains. European Food Research and Technology. 236(3): 549-556.
[43] Marsh, A.J., O'Sullivan, O., Hill, C., Ross, R.P., and Cotter, P.D. (2013). Sequencing-based analysis of the bacterial and fungal composition of kefir grains and milks from multiple sources. PLoS One. 8(7): e69371.
[44] Nalbantoglu, U., Cakar, A., Dogan, H., Abaci, N., Ustek, D., Sayood, K., and Can, H. (2014). Metagenomic analysis of the microbial community in kefir grains. Food Microbiology. 41: 42-51.
[45] Zamberi, N.R., Mohamad, N.E., Yeap, S.K., Ky, H., Beh, B.K., Liew, W.C., Tan, S.W., Ho, W.Y., Boo, S.Y., Chua, Y.H., and Alitheen, N.B. (2016). 16S metagenomic microbial composition analysis of kefir grain using MEGAN and BaseSpace. Food Biotechnology. 30(3): 219-230.
[46] Kalamaki, M.S. and Angelidis, A.S. (2017). Isolation and molecular identification of yeasts in Greek kefir. International Journal of Dairy Technology. 70(2): 261-268.
[47] Valdés, A., Ibáñez, C., Simó, C., and García-Cañas, V. (2013). Recent transcriptomics advances and emerging applications in food science. TrAC Trends in Analytical Chemistry. 52(0): 142-154.
[48] Sieuwerts, S., Molenaar, D., van Hijum, S.A.F.T., Beerthuyzen, M., Stevens, M.J.A., Janssen, P.W.M., Ingham, C.J., de Bok, F.A.M., de Vos, W.M., and van Hylckama Vlieg, J.E.T. (2010). Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Applied and Environmental Microbiology. 76(23): 7775-7784.
[49] Zdenkova, K., Alibayov, B., Karamonova, L., Purkrtova, S., Karpiskova, R., and Demnerova, K. (2016). Transcriptomic and metabolic responses of Staphylococcus aureus in mixed culture with Lactobacillus plantarum, Streptococcus thermophilus and Enterococcus durans in milk. Journal of Industrial Microbiology and Biotechnology. 43(9): 1237-1247.
[50] Lazzi, C., Turroni, S., Mancini, A., Sgarbi, E., Neviani, E., Brigidi, P., and Gatti, M. (2014). Transcriptomic clues to understand the growth of Lactobacillus rhamnosus in cheese. BMC Microbiology. 14(1).
[51] Dugat-Bony, E., Straub, C., Teissandier, A., Onésime, D., Loux, V., Monnet, C., Irlinger, F., Landaud, S., Leclercq-Perlat, M.N., Bento, P., Fraud, S., Gibrat, J.F., Aubert, J., Fer, F., Guédon, E., Pons, N., Kennedy, S., Beckerich, J.M., Swennen, D., and Bonnarme, P. (2015). Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLoS ONE. 10(4).
[52] Monnet, C., Dugat-Bony, E., Swennen, D., Beckerich, J.M., Irlinger, F., Fraud, S., and Bonnarme, P. (2016). Investigation of the activity of the microorganisms in a reblochon-style cheese by metatranscriptomic analysis. Frontiers in Microbiology. 7(APR).
[53] Mendes, F., Sieuwerts, S., de Hulster, E., Almering, M.J.H., Luttik, M.A.H., Pronk, J.T., Smid, E.J., Bron, P.A., and Daran-Lapujadea, P. (2013). Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures. Applied and Environmental Microbiology. 79(19): 5949-5961.
[54] Serafini, F., Turroni, F., Ruas-Madiedo, P., Lugli, G.A., Milani, C., Duranti, S., Zamboni, N., Bottacini, F., van Sinderen, D., Margolles, A., and Ventura, M. (2014). Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. International Journal of Food Microbiology. 178: 50-59.
[55] Gallardo, J.M., Ortea, I., and Carrera, M. (2013). Proteomics and its applications for food authentication and food-technology research. TrAC Trends in Analytical Chemistry. 52: 135-141.
[56] Piras, C., Roncada, P., Rodrigues, P.M., Bonizzi, L., and Soggiu, A. (2016). Proteomics in food: Quality, safety, microbes, and allergens. Proteomics. 16(5): 799-815.
[57] Gagnaire, V. and Jan, G., (2017). Proteomics of fermented milk products. In: M.L. Colgrave, Editor, Proteomics in Food Science, Academic Press. pp. 361-382.
[58] De Angelis, M., Calasso, M., Cavallo, N., Di Cagno, R., and Gobbetti, M. (2016). Functional proteomics within the genus Lactobacillus. Proteomics. 16(6): 946-962.
[59] Brown, L., Pingitore, E.V., Mozzi, F., Saavedra, L., Villegas, J.M., and Hebert, E.M. (2017). Lactic acid bacteria as cell factories for the generation of bioactive peptides. Protein and Peptide Letters. 24(2): 146-155.
[60] Giacometti, J. and Buretić-Tomljanović, A. (2017). Peptidomics as a tool for characterizing bioactive milk peptides. Food Chemistry. 230: 91-98.
[61] Yang, Y., Shevchenko, A., Knaust, A., Abuduresule, I., Li, W., Hu, X., Wang, C., and Shevchenko, A. (2014). Proteomics evidence for kefir dairy in early bronze age China. Journal of Archaeological Science. 45(1): 178-186.
[62] Ebner, J., Aşçi Arslan, A., Fedorova, M., Hoffmann, R., Küçükçetin, A., and Pischetsrieder, M. (2015). Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains. Journal of Proteomics. 117: 41-57.
[63] Dallas, D.C., Citerne, F., Tian, T., Silva, V.L.M., Kalanetra, K.M., Frese, S.A., Robinson, R.C., Mills, D.A., and Barile, D. (2016). Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins. Food Chemistry. 197: 273-284.
[64] Chen, M.J., Tang, H.Y., and Chiang, M.L. (2017). Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiology. 66: 20-27.
[65] Cavallero, G.J., Malamud, M., Casabuono, A.C., Serradell, M.D.L.Á., and Couto, A.S. (2017). A glycoproteomic approach reveals that the S-layer glycoprotein of Lactobacillus kefiri CIDCA 83111 is O- and N-glycosylated. Journal of Proteomics. 162: 20-29.
[66] Liu, Y. and Pischetsrieder, M. (2017). Identification and relative quantification of bioactive peptides sequentially released during simulated gastrointestinal digestion of commercial kefir. Journal of Agricultural and Food Chemistry. 65(9): 1865-1873.
[67] Wishart, D.S. (2008). Metabolomics: applications to food science and nutrition research. Trends in Food Science & Technology. 19(9): 482-493.
[68] Cevallos-Cevallos, J.M., Reyes-De-Corcuera, J.I., Etxeberria, E., Danyluk, M.D., and Rodrick, G.E. (2009). Metabolomic analysis in food science: A review. Trends in Food Science & Technology. 20(11-12): 557-566.
[69] Nicholson, J.K. and Lindon, J.C. (2008). Systems biology: Metabonomics. Nature. 455(7216): 1054-1056.
[70] Hu, J.B., Gunathilake, S., Chen, Y.C., and Urban, P.L. (2014). On the dynamics of kefir volatome. RSC Advances. 4(55): 28865-28870.
[71] Irigoyen, A., Ortigosa, M., Garcia, S., Ibanez, F.C., and Torre, P. (2012). Comparison of free amino acids and volatile components in three fermented milks. International Journal of Dairy Technology. 65(4): 578-584.
[72] Walsh, A.M., Crispie, F., Kilcawley, K., O’Sullivan, O., O’Sullivan, M.G., Claesson, M.J., and Cotter, P.D. (2016). Microbial succession and flavor production in the fermented dairy beverage kefir. mSystems. 1(5).