Extraction and Application of Yeast BetaGlucan
Main Article Content
Abstract
เบต้ากลูแคน (Beta-glucan) จากยีสต์พบได้ในโครงสร้างผนังเซลล์ของยีสต์ซึ่งเป็นคาร์โบไฮเดรตที่ประกอบด้วยน้ำตาลกลูโคสที่เชื่อมโมเลกุลของน้ำตาลและเรียงต่อกันในรูปแบบต่างๆ ปริมาณของเบต้ากลูแคนในยีสต์จะแตกต่างกันขึ้นอยู่กับสายพันธุ์ยีสต์ สภาวะในการเลี้ยง ความเป็นกรด-ด่าง มีงานวิจัยและการศึกษาที่ผ่านมาได้รายงานถึงการนำเบต้ากลูแคนจากยีสต์มาประยุกต์ใช้ในอุตสาหกรรมอาหาร การเกษตร ปศุสัตว์ และทางการแพทย์ ผลการทดลองชี้ให้เห็นถึงคุณประโยชน์ของเบต้ากลูแคน และยังพบวิธีการสกัดเบต้ากลูแคนด้วยวิธีต่างๆ ในสภาวะที่เหมาะสมเพื่อให้ได้เบต้ากลูแคนในปริมาณสูง ดังนั้นในบทความนี้ได้รวบรวมงานวิจัยเกี่ยวกับเบต้ากลูแคนจากยีสต์ วิธีการสกัดเบต้ากลูแคน ปริมาณเบต้ากลูแคนจากยีสต์สายพันธุ์ต่างๆ รวมถึงการนำไปใช้ประโยชน์ในอนาคต
Article Details
Copyrights of all articles in the Journal of Food Technology available in print or online are owned by Siam University and protected by law.
References
[2] Manners, D.J., Masson, A.J and Patterson, J.C. (1973). The structure of a β-(1→3)-D-glucan from yeast cell walls. Biochemical Journal. 135(1): 19–30.
[3] Lipke, P.N. and Ovalle, R. (1998). Cell wall architecture in yeast: new structure and new challenges. Journal of Bacteriology. 180(15): 3735–3740.
[4] Nguyen, T.H., Fleet, G.H. and Rogers, P.L. (1998). Composition of the cell walls of several yeast species. Applied Microbiology and Biotechnology. 50: 206–212.
[5] Vassileios, V., Liouni, M., Calokerinos, A.C. and Nerantzisc, E.T. (2016). An evaluation study of different methods for the production of β-D-glucan from yeast biomass. Drug Testing and Analysis. 8(1): 46–55.
[6] Kwiatkowski, S., Thielen, U., Glenney, P. and Moran, C. (2009). A study of Saccharomyces cerevisiae cell wall glucans. Journal of the Institute of Brewing. 115: 151-158.
[7] Osumi M. (1998). The Ultrastructure of Yeast: Cell Wall Structure and Formation. Micron. 29: 207-233.
[8] Kath, F. and Kulicke, W.M. (1999). Mild enzymatic isolation of mannan and glucan from yeast Saccharomyces cerevisiae. Angew Makromol Chem. 268: 59-68.
[9] Zechner-Krpan, V. (2010). Application of Different Drying Methods on β-Glucan Isolated from Spent Brewer’s Yeast Using Alkaline Procedure. Agriculturae Conspectus Scientificus. 75(1): 45-50.
[10] Jiménez-Moreno, N. and Ancín-Azpilicueta, C. (2009). Sorption of volatile phenols by yeast cell walls. International Journal of Wine Research. 1: 11–18.
[11] Novak, M. and Vetvicka, V. (2008). β-Glucans, history and the present: Immunomodulatory aspects and mechanisms of action. Journal of Immunotoxicology. 5(1): 47-57.
[12] Stier, H., Ebbeskotte, V. and Gruenwald, J. (2014). Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutrition Journal. 13: 38.
[13] Shukla, T.P. and Halpern, G.J. (2005 a). Emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0064068.
[14] Laroche, C. and Michaud, P.H. (2007). New developments and properties for β-(1,3)-glucans. Recent Patents on Biotechnology. 1(1): 59-73.
[15] Seeley, R.D. (1977). Fractionation and utilization of baker’s yeast. MBAA Tech Quart. 14(1): 35-39.
[16] Thammakiti, S., Suphantharika, M., Phaesuwan, T. and Verduyn, C. (2004). Preparation of spent brewer's yeast b-glucans for potential applications in the food industry. International Journal of Food Science and Technology. 39(1): 21-29.
[17] Shukla, T.P. and Halpern G.J. (2005 b) Cookies comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0084584.
[18] Shukla, T.P. and Halpern, G.J. (2005 c) Processed meats comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0084590.
[19] Shukla, T.P. and Halpern, G.J. (2005 d). Processed cheeses comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid, US 2005/0084595.
[20] Shukla, T.P. and Halpern, G.J. (2005 e). Breads comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid, US 2005/0084585.
[21] Shukla, T.P. and Halpern, G.J. (2005 f). Snack foods comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0084588.
[22] Shukla, T.P. and Halpern, G.J. (2005 g). Ice creams comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0238781.
[23] Tudorica, C.M., Jones, E., Kuri, V. and Brennan, C.S. (2004). The effect of refined barley β-glucan on the physico-structural properties of low-fat dairy products: curd yield, microstructure, texture and rheology. Journal of the Science of Food and Agriculture. 84: 1159-1169.
[24] Shukla, T.P. and Halpern, G.J. (2005 h). Dressings comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0084589.
[25] Worrasinchai, S., Suphantharika, M., Pinjai, S. and Jamnong, P. (2006). β-glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocolloid. 20: 68-78.
[26] Shukla, T.P. and Halpern, G.J. (2005 i). Sauces comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid, US 2005/0238785.
[27] Shukla, T.P. and Halpern, G.J. (2005 j). Dips comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0233047.
[28] Shukla T.P. and Halpern, G.J. (2005 k). Soups comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0084600.
[29] Naumann, E., van Rees, A.B., Onning, G., Oste, R., Wydra, M. and Mensink, R.P. (2006). Beta-glucan incorporated into fruit drink effectively lowers serum LDL-cholesterol concentration. The American journal of clinical nutrition. 83(3): 601–605.
[30] นรินทร์ ตันไพบูรณ์. 2560. อุตสาหกรรมเอทานอล. แนวโน้มธุรกิจ/อุตสาหกรรม ปี2560-62. ธนาคารกรุงศรีอยุธยา
[31] Zechner-Krpan, V., Petravić-Tominac, V., Galović, P., Galović V., Filipović-Grčić, J. and Srečec, S. (2010). Application of different drying methods on β-glucan isolated from spent brewer’s yeast using alkaline procedure. Agriculturae Conspectus Scientificus. 75: 45-50.
[32] Javmen, A., Grigiškis, S. and Gliebute, R. (2012). β-glucan extraction from Saccharomyces cerevisiae yeast using Actinomyces rutgersensis 88 yeast lysing enzymatic complex. Biologija. 58(2): 51-59.
[33] Noppawat, P., Bhagavathi, S., Sasithorn, S., Sartjin, P., Periyanaina, K., Khontaros, C. and Chaiyavat, C. (2014). Extraction of β-glucan from Saccharomyces cerevisiae : Comparison of different extraction methods and in vivo assessment of immunomodulatory effect in mice. Food Science and Technology. 37(1): 124-130.
[34] Mikami, T., Nagase, T., Matsumoto, T., Suzuki, M., Suzuki, S. and Kumanom, N. (1982). Mitogenic effect of the mannans from Saccharomyces cerevisiae on mouse spleen lymphocytes. Microbiology and Immunology. 26: 913-922.
[35] Mucksová, J., Babíček, K. and Pospísil, M. (2001). Particulate 1,3-beta-D-glucan. carboxymethylglucan and sulfoethylglucan- influence of their oral or intraperitoneal administration on immunological respondence of mice. Folia Microbiol (Praha). 46(6): 559–563.
[36] Kunst, A., van Schie, B.J., Schmedding, D.J.M. and Veenema, M.J. (1997). Emulsifier from yeast. European Patent Application. EP790316.
[37] Caridi, A. (2006). Enological functions of pariental yeast mannoproteins. Antonie Van Leeuwenhoek. 89: 417-422.
[38] Gonzalez-Ramos, D. and Gonzalez, R. (2006). Genetic determinants of the release of mannoproteins of enological interest by Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry. 54(25): 9411-9416.
[39] Liou, X.L., Wang, Q., Cui, S.W. and Liou, H.Z. (2008). A new isolation method of β-D glucans from spent yeast Saccharomyces cerevisiae. Food Hydrocolloids. 22(2): 239-247.
[40] Magnani, M., Calliari, C.M., de Macedo, F.C., Mori, M.P., de Syllos Cólus, I.M. and Castro-Gomez, R.J. (2009). Optimized methodology for extraction of (1,3)(1,6)-β-glucan from Saccharomyces cerevisiae and in vitro evaluation of the cytotoxicity and genotoxicity of the corresponding carboxymethyl derivative. Carbohydrate Polymers. 78: 658-665.
[41] Shokri, H., Asadi, F. and Khosravi, A.R. (2008). Isolation of β-glucan from the cell wall of Saccharomyces cerevisiae. Natural Product Research. 22(5): 414-421.
[42] Kim, K.S. and Yun, S. (2006). Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae. Enzyme and Microbial Technology. 39: 496-500.
[43] Vassileios, V., Liouni, M., Calokerinos, A.C. and Nerantzis, E.T. (2016). An evaluation study of different methods for the production of β-D-glucan from yeast biomass. Drug Testing and Analysis. 8(1): 46–55.
[44] Adachi, Y., Okazaki, M., Ohno, N. and Yadomae, T. (1994). Enhancement of cytokine production by macrophages stimulated with (1→3)-beta-D-glucan, grifolan (GRN) isolated from Grifola frondosa. Biological and Pharmaceutical Bulletin. 17(12): 1554–1560.
[45] Abel, G. and Czop, J.K. (1992). Stimulation of human monocyte beta-glucan receptors by glucan induces production of TNF-alpha and IL-1 beta. International Journal of Immunopharmacology. 14(8): 1363-1373.
[46] Lin, Y.L., Lee, S.S., Hou, S.M. and Chiang, B.L. (2006). Polysaccharide purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper 1 immune response in BALB/c mice. Molecular Pharmacology. 70(2): 637–644.
[47] Suzuki, Y. (2001). Th1/Th2-balancing immunomodulating activity of gel-forming (1→3)-beta-glucans from fungi. Biological and Pharmaceutical Bulletin. 24: 811–819.
[48] Bedirli, A., Kerem, M., Pasaoglu, H., Akyurek, N., Tezcaner, T., Elbeg, S., Memis, L. and Sakrak, O. (2007). Beta-glucan attenuates inflammatory cytokine release and prevents acutelung injury in an experimental model of sepsis. Shock. 27(4): 397–401.
[49] Yun, C.H., Estrada, A., Van Kessel, A., Park, B.C. and Laarveld, B. (2003). Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunology and Medical Microbiology. 35(1): 67–75.
[50] Tian, X., Shao, Y., Wang, Z. and Guo, Y. (2016). Effects of dietary yeast-glucans supplementation on growth performance, gut morphology, intestinal Clostridium perfringens population and immune response of broiler chickens challenged with necrotic enteritis. Animal Feed Science and Technology. 215: 144–155.
[51] Cox, C.M., Sumners, L.H., Kim, S., McElroy, A.P., Bedford, M.R. and Dalloul, R.A. (2010). Immune responses to dietary beta-glucan in broiler chicks during Eineia challenge. Poultry Science. 89(12): 2597-2607.
[52] Huff, G.R., Huff, W.E., Farnell, M.B., Rath, N.C., Solis de los Santos, F. and Donoghue, A.M. (2010). Bacterial clearance heterophil function and hematological parameters of transport-stressed turkey poults supplemented with dietary yeast extract. Poultry Science. 89: 447-456.
[53] Revolledo, L., Ferreira, C.S. and Ferreira, A.J., (2009). Prevention of Salmonella Typhimurium colonization and organ invasion by combination treatment in broiler chickens. Poultry Science. 88: 734–743.
[54] Volman, j.j., Ramakers, J.D. and Plat, J. (2008). Dietary modulation of immune function by beta-glucans. Physiology Behavior. 94(2): 276-284.