Extraction and Application of Yeast BetaGlucan

Main Article Content

Supatsara Rujanant
Sasithorn Krongrung

Abstract

เบต้ากลูแคน (Beta-glucan) จากยีสต์พบได้ในโครงสร้างผนังเซลล์ของยีสต์ซึ่งเป็นคาร์โบไฮเดรตที่ประกอบด้วยน้ำตาลกลูโคสที่เชื่อมโมเลกุลของน้ำตาลและเรียงต่อกันในรูปแบบต่างๆ ปริมาณของเบต้ากลูแคนในยีสต์จะแตกต่างกันขึ้นอยู่กับสายพันธุ์ยีสต์ สภาวะในการเลี้ยง ความเป็นกรด-ด่าง มีงานวิจัยและการศึกษาที่ผ่านมาได้รายงานถึงการนำเบต้ากลูแคนจากยีสต์มาประยุกต์ใช้ในอุตสาหกรรมอาหาร การเกษตร ปศุสัตว์ และทางการแพทย์ ผลการทดลองชี้ให้เห็นถึงคุณประโยชน์ของเบต้ากลูแคน และยังพบวิธีการสกัดเบต้ากลูแคนด้วยวิธีต่างๆ ในสภาวะที่เหมาะสมเพื่อให้ได้เบต้ากลูแคนในปริมาณสูง ดังนั้นในบทความนี้ได้รวบรวมงานวิจัยเกี่ยวกับเบต้ากลูแคนจากยีสต์ วิธีการสกัดเบต้ากลูแคน ปริมาณเบต้ากลูแคนจากยีสต์สายพันธุ์ต่างๆ รวมถึงการนำไปใช้ประโยชน์ในอนาคต


 

Article Details

How to Cite
Rujanant, S., & Krongrung, S. (2018). Extraction and Application of Yeast BetaGlucan. Journal of Food Technology, Siam University, 13(1), 19–31. Retrieved from https://li01.tci-thaijo.org/index.php/JFTSU/article/view/106813
Section
บทความวิชาการ (Academic Article)

References

[1] Barsanti, L., Passarelli, V., Evangelista, V., Frassanito, A.M. and Gualtieri, P. (2011). Chemistry physico-chemistry and applications linked to biological activities of β-glucans. Natural Product Reports. 28(3): 457–466.
[2] Manners, D.J., Masson, A.J and Patterson, J.C. (1973). The structure of a β-(1→3)-D-glucan from yeast cell walls. Biochemical Journal. 135(1): 19–30.
[3] Lipke, P.N. and Ovalle, R. (1998). Cell wall architecture in yeast: new structure and new challenges. Journal of Bacteriology. 180(15): 3735–3740.
[4] Nguyen, T.H., Fleet, G.H. and Rogers, P.L. (1998). Composition of the cell walls of several yeast species. Applied Microbiology and Biotechnology. 50: 206–212.
[5] Vassileios, V., Liouni, M., Calokerinos, A.C. and Nerantzisc, E.T. (2016). An evaluation study of different methods for the production of β-D-glucan from yeast biomass. Drug Testing and Analysis. 8(1): 46–55.
[6] Kwiatkowski, S., Thielen, U., Glenney, P. and Moran, C. (2009). A study of Saccharomyces cerevisiae cell wall glucans. Journal of the Institute of Brewing. 115: 151-158.
[7] Osumi M. (1998). The Ultrastructure of Yeast: Cell Wall Structure and Formation. Micron. 29: 207-233.
[8] Kath, F. and Kulicke, W.M. (1999). Mild enzymatic isolation of mannan and glucan from yeast Saccharomyces cerevisiae. Angew Makromol Chem. 268: 59-68.
[9] Zechner-Krpan, V. (2010). Application of Different Drying Methods on β-Glucan Isolated from Spent Brewer’s Yeast Using Alkaline Procedure. Agriculturae Conspectus Scientificus. 75(1): 45-50.
[10] Jiménez-Moreno, N. and Ancín-Azpilicueta, C. (2009). Sorption of volatile phenols by yeast cell walls. International Journal of Wine Research. 1: 11–18.
[11] Novak, M. and Vetvicka, V. (2008). β-Glucans, history and the present: Immunomodulatory aspects and mechanisms of action. Journal of Immunotoxicology. 5(1): 47-57.
[12] Stier, H., Ebbeskotte, V. and Gruenwald, J. (2014). Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutrition Journal. 13: 38.
[13] Shukla, T.P. and Halpern, G.J. (2005 a). Emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0064068.
[14] Laroche, C. and Michaud, P.H. (2007). New developments and properties for β-(1,3)-glucans. Recent Patents on Biotechnology. 1(1): 59-73.
[15] Seeley, R.D. (1977). Fractionation and utilization of baker’s yeast. MBAA Tech Quart. 14(1): 35-39.
[16] Thammakiti, S., Suphantharika, M., Phaesuwan, T. and Verduyn, C. (2004). Preparation of spent brewer's yeast b-glucans for potential applications in the food industry. International Journal of Food Science and Technology. 39(1): 21-29.
[17] Shukla, T.P. and Halpern G.J. (2005 b) Cookies comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0084584.
[18] Shukla, T.P. and Halpern, G.J. (2005 c) Processed meats comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0084590.
[19] Shukla, T.P. and Halpern, G.J. (2005 d). Processed cheeses comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid, US 2005/0084595.
[20] Shukla, T.P. and Halpern, G.J. (2005 e). Breads comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid, US 2005/0084585.
[21] Shukla, T.P. and Halpern, G.J. (2005 f). Snack foods comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0084588.
[22] Shukla, T.P. and Halpern, G.J. (2005 g). Ice creams comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0238781.
[23] Tudorica, C.M., Jones, E., Kuri, V. and Brennan, C.S. (2004). The effect of refined barley β-glucan on the physico-structural properties of low-fat dairy products: curd yield, microstructure, texture and rheology. Journal of the Science of Food and Agriculture. 84: 1159-1169.
[24] Shukla, T.P. and Halpern, G.J. (2005 h). Dressings comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0084589.
[25] Worrasinchai, S., Suphantharika, M., Pinjai, S. and Jamnong, P. (2006). β-glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocolloid. 20: 68-78.
[26] Shukla, T.P. and Halpern, G.J. (2005 i). Sauces comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid, US 2005/0238785.
[27] Shukla, T.P. and Halpern, G.J. (2005 j). Dips comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0233047.
[28] Shukla T.P. and Halpern, G.J. (2005 k). Soups comprising emulsified liquid shortening compositions comprising dietary fiber gel, water and lipid. US 2005/0084600.
[29] Naumann, E., van Rees, A.B., Onning, G., Oste, R., Wydra, M. and Mensink, R.P. (2006). Beta-glucan incorporated into fruit drink effectively lowers serum LDL-cholesterol concentration. The American journal of clinical nutrition. 83(3): 601–605.
[30] นรินทร์ ตันไพบูรณ์. 2560. อุตสาหกรรมเอทานอล. แนวโน้มธุรกิจ/อุตสาหกรรม ปี2560-62. ธนาคารกรุงศรีอยุธยา
[31] Zechner-Krpan, V., Petravić-Tominac, V., Galović, P., Galović V., Filipović-Grčić, J. and Srečec, S. (2010). Application of different drying methods on β-glucan isolated from spent brewer’s yeast using alkaline procedure. Agriculturae Conspectus Scientificus. 75: 45-50.
[32] Javmen, A., Grigiškis, S. and Gliebute, R. (2012). β-glucan extraction from Saccharomyces cerevisiae yeast using Actinomyces rutgersensis 88 yeast lysing enzymatic complex. Biologija. 58(2): 51-59.
[33] Noppawat, P., Bhagavathi, S., Sasithorn, S., Sartjin, P., Periyanaina, K., Khontaros, C. and Chaiyavat, C. (2014). Extraction of β-glucan from Saccharomyces cerevisiae : Comparison of different extraction methods and in vivo assessment of immunomodulatory effect in mice. Food Science and Technology. 37(1): 124-130.
[34] Mikami, T., Nagase, T., Matsumoto, T., Suzuki, M., Suzuki, S. and Kumanom, N. (1982). Mitogenic effect of the mannans from Saccharomyces cerevisiae on mouse spleen lymphocytes. Microbiology and Immunology. 26: 913-922.
[35] Mucksová, J., Babíček, K. and Pospísil, M. (2001). Particulate 1,3-beta-D-glucan. carboxymethylglucan and sulfoethylglucan- influence of their oral or intraperitoneal administration on immunological respondence of mice. Folia Microbiol (Praha). 46(6): 559–563.
[36] Kunst, A., van Schie, B.J., Schmedding, D.J.M. and Veenema, M.J. (1997). Emulsifier from yeast. European Patent Application. EP790316.
[37] Caridi, A. (2006). Enological functions of pariental yeast mannoproteins. Antonie Van Leeuwenhoek. 89: 417-422.
[38] Gonzalez-Ramos, D. and Gonzalez, R. (2006). Genetic determinants of the release of mannoproteins of enological interest by Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry. 54(25): 9411-9416.
[39] Liou, X.L., Wang, Q., Cui, S.W. and Liou, H.Z. (2008). A new isolation method of β-D glucans from spent yeast Saccharomyces cerevisiae. Food Hydrocolloids. 22(2): 239-247.
[40] Magnani, M., Calliari, C.M., de Macedo, F.C., Mori, M.P., de Syllos Cólus, I.M. and Castro-Gomez, R.J. (2009). Optimized methodology for extraction of (1,3)(1,6)-β-glucan from Saccharomyces cerevisiae and in vitro evaluation of the cytotoxicity and genotoxicity of the corresponding carboxymethyl derivative. Carbohydrate Polymers. 78: 658-665.
[41] Shokri, H., Asadi, F. and Khosravi, A.R. (2008). Isolation of β-glucan from the cell wall of Saccharomyces cerevisiae. Natural Product Research. 22(5): 414-421.
[42] Kim, K.S. and Yun, S. (2006). Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae. Enzyme and Microbial Technology. 39: 496-500.
[43] Vassileios, V., Liouni, M., Calokerinos, A.C. and Nerantzis, E.T. (2016). An evaluation study of different methods for the production of β-D-glucan from yeast biomass. Drug Testing and Analysis. 8(1): 46–55.
[44] Adachi, Y., Okazaki, M., Ohno, N. and Yadomae, T. (1994). Enhancement of cytokine production by macrophages stimulated with (1→3)-beta-D-glucan, grifolan (GRN) isolated from Grifola frondosa. Biological and Pharmaceutical Bulletin. 17(12): 1554–1560.
[45] Abel, G. and Czop, J.K. (1992). Stimulation of human monocyte beta-glucan receptors by glucan induces production of TNF-alpha and IL-1 beta. International Journal of Immunopharmacology. 14(8): 1363-1373.
[46] Lin, Y.L., Lee, S.S., Hou, S.M. and Chiang, B.L. (2006). Polysaccharide purified from Ganoderma lucidum induces gene expression changes in human dendritic cells and promotes T helper 1 immune response in BALB/c mice. Molecular Pharmacology. 70(2): 637–644.
[47] Suzuki, Y. (2001). Th1/Th2-balancing immunomodulating activity of gel-forming (1→3)-beta-glucans from fungi. Biological and Pharmaceutical Bulletin. 24: 811–819.
[48] Bedirli, A., Kerem, M., Pasaoglu, H., Akyurek, N., Tezcaner, T., Elbeg, S., Memis, L. and Sakrak, O. (2007). Beta-glucan attenuates inflammatory cytokine release and prevents acutelung injury in an experimental model of sepsis. Shock. 27(4): 397–401.
[49] Yun, C.H., Estrada, A., Van Kessel, A., Park, B.C. and Laarveld, B. (2003). Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunology and Medical Microbiology. 35(1): 67–75.
[50] Tian, X., Shao, Y., Wang, Z. and Guo, Y. (2016). Effects of dietary yeast-glucans supplementation on growth performance, gut morphology, intestinal Clostridium perfringens population and immune response of broiler chickens challenged with necrotic enteritis. Animal Feed Science and Technology. 215: 144–155.
[51] Cox, C.M., Sumners, L.H., Kim, S., McElroy, A.P., Bedford, M.R. and Dalloul, R.A. (2010). Immune responses to dietary beta-glucan in broiler chicks during Eineia challenge. Poultry Science. 89(12): 2597-2607.
[52] Huff, G.R., Huff, W.E., Farnell, M.B., Rath, N.C., Solis de los Santos, F. and Donoghue, A.M. (2010). Bacterial clearance heterophil function and hematological parameters of transport-stressed turkey poults supplemented with dietary yeast extract. Poultry Science. 89: 447-456.
[53] Revolledo, L., Ferreira, C.S. and Ferreira, A.J., (2009). Prevention of Salmonella Typhimurium colonization and organ invasion by combination treatment in broiler chickens. Poultry Science. 88: 734–743.
[54] Volman, j.j., Ramakers, J.D. and Plat, J. (2008). Dietary modulation of immune function by beta-glucans. Physiology Behavior. 94(2): 276-284.