มบัติเชิงหน้าที่และการประยุกต์ใช้โปรตีนไข่ขาวไฮโดรไลเสต
Main Article Content
บทคัดย่อ
โปรตีนไฮโดรไลเสตเป็นผลิตภัณฑ์ที่ได้จากการย่อยสลายพันธะเปปไทด์ของโปรตีนได้เปปไทด์ที่มีขนาดโมเลกุลแตกต่างกันและกรดอะมิโนอิสระ กระบวนการผลิตสามารถทำได้โดยการใช้สารเคมี กรด ด่าง หรือเอนไซม์โปรติเอส ในสภาวะเหมาะสม การผลิตโปรตีนไฮโดรไลเสตสามารถผลิตได้จากแหล่งโปรตีนที่หลากหลาย หนึ่งในแหล่งโปรตีนไฮโดรไลเสตที่สำคัญ คือ โปรตีนไข่ขาวไฮโดรไลเสตซึ่งมีบทบาทสำคัญทางด้านอุตสาหกรรมอาหาร นิยมนำมาประยุกต์ใช้ในแง่ของคุณค่าโภชนเภสัช และยังมีสมบัติเชิงหน้าที่ในรูปของการเป็นอิมัลซิไฟเออร์ สารที่ทำให้เกิดโฟม และสารต้านอนุมูลอิสระ เหมาะสำหรับบุคคลที่มีข้อจำกัดทางด้านอาหารหรือผู้ที่ต้องการโปรตีนในปริมาณที่สูงขึ้น นอกจากนี้ยังสามารถเป็นสารออกฤทธิ์ทางชีวภาพที่มีประโยชน์ต่อร่างกายของมนุษย์ ในบทความนี้ได้นำเสนองานวิจัยและข้อมูลที่เกี่ยวข้องกับโปรตีนไข่ขาวไฮโดรไลเสต ในแง่กระบวนการผลิตโปรตีนไข่ขาวไฮโดรไลเสต และการประยุกต์ใช้โปรตีนไข่ขาวไฮโดรไลเสตทางอุตสาหกรรมอาหารและทางเภสัชศาสตร์
Article Details
บทความทุกบทความในวารสารเทคโนโลยีการอาหาร ทั้งในรูปแบบสิ่งพิมพ์ และในระบบออนไลน์ ถือเป็นลิขสิทธิ์ของมหาวิทยาลัยสยาม และได้รับการคุ้มครองตามกฎหมาย
เอกสารอ้างอิง
[2] Pasupuleti, V.K. and Braun, S. (2010). State of the art manufacturing of protein hydrolysates. Protein Hydrolysates in Biotechnology. Springer Dordrecht Heidelberg, New York, NY, USA. pp. 11–32.
[3] Lahl, W.J. and Windstaff, D.A. (1989). Spices and seasonings: hydrolysed proteins. In: Proceedings of the 6th SIFST Symposium on Food Ingredients-applications, Status, and Saftey. Singapore Institute of Food Science and Technology, Singapore. pp. 51–65.
[4] Haard, N.F. (2001). In: Sikorski, Z.E. (Ed.), Enzymic modification proteins in food systems. chemical and functional properties of food proteins. CRC Press, Boca Raton. pp. 155–190.
[5] Vanga, S.K. and Raghavan, V. (2017). Processing effects on tree nut allergens: a review. Critical Reviews in Food Science and Nutrition. 57:3794-3806.
[6] Farkas, D.F. and Hoover, D.G. (2000). High pressure processing. Journal of Food Science. 65(s8):47–64.
[7] Wu, T.Y., Guo, N., Teh, C.Y. and Hay, J.X.W. (2012). Advances in ultrasound technology for environmental remediation. Springer Science & Business Media.
[8] Rivalain, N., Roquain, J. and Demazeau, G. (2010). Development of high hydrostatic pressure in biosciences: pressure effect on biological structures and potential applications in biotechnologies. Biotechnology Advances. 28(6):659–672.
[9] Hill, L.R., Silvestri, L.G., Ihm, P., Farchi, G. and Lanciani, P. (1965). Automatic classification of staphylococci by principal-component analysis and a gradient method. Journal of Bacteriology 89(5):1393-1401.
[10] Olcott, H. S. and H. Fraenkel-Conrat (1947). Chemical reviews. 41:151-197.
[11] Udenigwe, C.C. and Aluko, R.E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science. 77(1):11–24.
[12] Vanga, S. K., Singh, A. and Raghavan, V. (2017). Review of conventional and novel food processing methods on food allergens. Critical Reviews in Food Science and Nutrition. 57(10):2077–2094.
[13] Singh, A. and Ramaswamy, H.S. (2014). Effect of high-pressure treatment on trypsin hydrolysis and antioxidant activity of egg white proteins. International Journal of Food Science & Technology. 49(1):269–279.
[14] Eckert, E., Zambrowicz, A., Pokora, M., Polanowski, A., Chrzanowska, J., Szoltysik, M., Dabrowska, A., Róz˙an´ski, H. and Trziska, T. (2013). Biologically active peptides derived from egg proteins. World's Poultry Science Journal. 69(2):375–386.
[15] Lin, S., Jin, Y., Liu, M., Yang, Y., Zhang, M., Guo, Y., Jones, G., Liu, J. and Yin, Y. (2013). Research on the preparation of antioxidant peptides derived from egg white with assisting of high-intensity pulsed electric field. Food Chemistry. 139:300–306.
[16] Lafarga, T. and Hayes, M. (2014). Bioactive peptides from meat muscle and by-products: generation, functionality and application as functional ingredients. Meat Science. 98(2):227–239.
[17] Ozuna, C., Martínez, I.P., Tostado, E.C., Ozimek, L., Llano, S.L.A. (2015). A review. Innovative applications of high-intensity ultrasound in the development of functional food ingredients: production of protein hydrolysates and bioactive peptides. Food Research International. 77:685-696.
[18] Pokora, M., Eckert E., Zambrowicz, A., Bobak, Ł., Szołtysik, M., Dabrowska, A., Chrzanowska, J., Polanowski A. and Trziszka, T. (2014). Biological and functional properties of proteolytic enzyme-modified egg protein by-products. Food Science & Nutrition. 1(2):184–195.
[19] Desert, C., Guerin-Dubiard, C., Nau, F., Jan, G., Val, F. and Mallard, J. (2001). Comparison of different electrophoretic separations of hen egg white proteins. Journal of Agricultural and Food Chemistry. 49(10):4553–4561.
[20] Baron, F., Nau, F., Gu erin-Dubiard, C., Bonnassie, S., Gautier, M., Simon, C. and Andrews Jan, S. (2015). Egg white versus Salmonella Enteritidis! a harsh medium meets a resilient pathogen. Food Microbiology. 53:82-93.
[21] Miguel, M., Ramos, M., Aleixandre, MA. and Lopez-Fandino, R. (2006). Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin. Journal of Agricultural and Food Chemistry. 54(3):726–731.
[22] Castro, R.J.S. and Harumi Sato, H. (2014). A response surface approach on optimization of hydrolysis parameters for the production of egg white protein hydrolysates with antioxidant activities. Biocatalysis and Agricultural Biotechnology. 4:55–62.
[23] Ai, M., Tang, T., Zhou, L., Ling, Z. and Guo, S. (2019). Effects of different proteases on the emulsifying capacity, rheological and structure characteristics of preserved egg white hydrolysates. Food Hydrocolloids. 87:933–942.
[24] Singh, A. and Ramaswamy, H.S. (2014). Thermal and high-pressure inactivation kinetics of avidin. Journal of Food Processing and Preservation. 38(4):1830–1839.
[25] Manas, P., Munoz, B., Sanz, D. and Condon, S. (2006). Inactivation of lysozyme by ultrasonic waves under pressure at different temperatures. Enzyme and Microbial Technology. 39(6):1177–1182.
[26] Lee, J. O., Sung, D., Park, S. H., Lee, J., Kim, J., Shon, D. H. and Han, Y. (2017). Effect of acid treatment on allergenicity of peanut and egg. Journal of the Science of Food and Agriculture. 97(7):2116–2121.
[27] Yang, A., Long, C., Xia, J., Tong, P., Cheng, Y. and Wang, Y. (2017). Enzymatic characterisation of the immobilised Alcalase to hydrolyse egg white protein for potential allergenicity reduction. Journal of the Science of Food and Agriculture. 97(1):199–206.
[28] Abeyrathne, E., Lee, H., Jo, C., Suh, J. and Ahn, D. (2016). Enzymatic hydrolysis of ovomucin and the functional and structural characteristics of peptides in the hydrolysates. Food Chemistry. 192:107–113.
[29] Hernández-Carrión, M., Hernando, I. and Quiles, A. (2014). High hydrostatic pressure treatment as an alternative to pasteurization to maintain bioactive compound content and texture in red sweet pepper. Innovative Food Science & Emerging Technologies. 26:76–85.
[30] Bigliardi, B. and Galati, F. (2013). Innovation trends in the food industry: the case of functional foods. Trends in Food Science & Technology. 31(2):118–129.
[31] Kristinsson, H.G. and Rasco, B.A. (2000). Fish protein hydrolysates: production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition. 40: 43-81.
[32] Elias, R.J., Kellerby, S.S. and Dec, E.A. (2008). Antioxidant activity of protein and peptide. Critical Reviews in Food Science and Nutrition. 48(5):430-441.
[33] Garcés-Rimón, M., Sandoval, M., Molin, E., López-Fandiño, R. and Miguel, M. (2016). Egg protein hydrolysates: new culinary textures. International Journal of Gastronomy and Food Science. 3:17–22.
[34] Han, A., Romero, H.M., Nishijima, N., Ichimura, T., Handa, A., Xu, C., Zhang, Y. (2019). Effect of egg white solids on the rheological properties and bread making performance of gluten-free batter. Food Hydrocolloids. 87:287–296.
[35] Moure, A., Dominguez, H. and Parajo, J.C. (2006). Antioxidant properties of ultrafiltration recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry. 41(2):447–456.
[36] Li-Chan, E.C. (2015). Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science. 1:28–37.
[37] Kratz, F. (2008). Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release. 132(2):171–183.
[38] Kovacs-Nolan, J. K. N., Phillips, M. and Mine, Y. (2005). Advances in the value of eggs and egg components for human health. Journal of Agricultural and Food Chemistry.53(22):8421–8431.
[39] Oguro, T., Watanabe, K., Tani, H., Ohishi, H. and Ebina, T. (2000). Morphological observations on antitumour activities of 7-10 kDa fragment in α-subunit from pronase treated ovomucin in a double grated tumor system. Food Science and Technology Research. 6:179–185.
[40] Miguel, M., Recio, I., Gómez-Ruiz, JA., Ramos, M. and López-Fandiño, R. (2004). Angiotensin I-converting enzyme inhibitory activity of peptides derived from egg white proteins by enzymatic hydrolysis. Journal of Food Protection. 67(9):1914-1920.
[41] Miguel, M. and Aleixandre, A. (2006). Review antihypertensive peptides derived from egg proteins. The Journal of nutrition. 136(6):1457-1460.
[42] Matoba, N., Yamada, Y., Usui, H., Nakagiri, R. and Yoshikawa, M. (2001). Designing potent derivatives of ovokinin(2-7), an anti-hypertensive peptide derived from ovalbumin. Bioscience, Biotechnology, and Biochemistry. 65(3):736-9.
[43] You, S.J. and Wu, J. (2011). Angiotensin-I converting enzyme inhibitory and antioxidant activities of egg protein hydrolysates produced with gastrointestinal and nongastrointestinal enzymes. Journal of Food Science. 76(6):C801-7.
[44] Xu, Q., Fan, H., Yu, W., Hong, H. and Wu, J. (2017). Transport study of egg derived antihypertensive peptides (LKP and IQW) using Caco-2 and HT29 co-culture monolayers. Journal of Agricultural and Food Chemistry. 65(34):7406–7414.
[45] Yu Z., Yin Y., Zhao W., Yu Y., Liu B., Liu J. and Chen F. (2011) Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chemistry. 129:1376–1382.
[46] Bejjani, S. and Wu, J. (2013). Transport of IRW, an ovotransferrin-derived antihypertensive peptide, in human intestinal epithelial Caco-2 Cells. Journal of Agricultural and Food Chemistry. 61(7):1487–1492.
[47] Ding, L., Wang, L. Y., Yu, Z. P., Zhang, T. and Liu, J. B. (2016). Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers. International Journal of Food Sciences and Nutrition. 67(2):111–116.
[48] Ding, L., Zhang, Y., Jiang, Y., Wang, L., Liu, B. and Liu, J. (2014). Transport of egg white ACE-inhibitory peptide, Gln-Ile-Gly-Leu-Phe, in human intestinal Caco-2 cell monolayers with cytoprotective effect. Journal of Agricultural and Food Chemistry. 62:3177–3182.
[49] Miguel, M., Manso, M.A., Da´valos,A., Pen, G., Lasuncio´n, M.A. and Lo´pez-Fandin˜o, R. (2008). Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile. Molecular Nutrition & Food Research. 52:1507–1513.
[50] Liu, J., Jin, Y., Lin, S., Jones, G. and Chen, F. (2015). Purification and identification of novel antioxidant peptides from egg white protein and their antioxidant activities. Food Chemistry. 175:258–266.
[51] Carrillo, W., Go´mez-Ruiz, J.A., Miralles, B., Ramos, M., Barrio, D. and Recio, I. (2016). Identification of antioxidant peptides of hen egg-white lysozyme and evaluation of inhibition of lipid peroxidation and cytotoxicity in the Zebrafish model. European Food Research Technology. 242:1777–1785.
[52] Sinha, R. and Radha, C. (2007). Whey Protein hydrolysate: functional properties, nutritional quality and utilization in beverage formulation. Food Chemistry. 101(4): 1484–1491.
[53] Miguel, M. and Contreras, M. (2009). ACE-inhibitory and antihypertensive properties of a bovine casein hydrolysate. Food Chemistry. 112(1):211–214.
[54] Chen, C. and Chi, Y.J. (2012) a. Purification and identification of antioxidant peptides from egg white protein hydrolysate. Amino Acids. 43(1):457–466.
[55] Chen, C. and Chi, Y.J. (2012) b. Influence of degree of hydrolysis on functional properties, antioxidant and ACE inhibitory activities of egg white protein hydrolysate. Food Science and Biotechnology. 21:27–34.
[56] Nchienzia, H. and Morawicki, R. (2010). Enzymatic hydrolysis of poultry meal with endo-and exopeptidases. Poultry Science. 89(10):2273–2280.
[57] He, R. and Alashi, A. (2013) a. Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chemistry. 141(1):153–159.
[58] He, R. and Malomo, S.A. (2013) b. Purification and hypotensive activity of rapeseed protein-derived renin and angiotensin converting enzyme inhibitory peptides. Journal of Functional Foods. 5(2):781–789.
[59] Li, Y. and Jiang, B. (2008)b. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry. 106(2):444–450.
[60] Karamac, M. and Kosi nska-Cagnazzo, A. (2016). Use of different proteases to obtain flaxseed protein hydrolysates with antioxidant activity. International Journal of Molecular Sciences. 17(7): 1027.
[61] Girgih, A.T. and Udenigwe, C.C. (2011) a. In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions. Journal of the American Oil Chemists' Society. 88(3):381–389.
[62] Girgih, A.T. and Udenigwe, C.C. (2011) b. Kinetics of enzyme inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. Journal of the American Oil Chemists' Society. 88(11):1767–1774.
[63] Jamdar, S. and Rajalakshmi, V. (2010). Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry. 121(1):178–184.
[64] Li, H. and Aluko, R.E. (2010). Identification and inhibitory properties of multifunctional peptides from pea protein hydrolysate. Journal of Agricultural and Food Chemistry. 58(21):11471–11476.
[65] Vilcacundo, R. and Martínez-Villaluenga, C. (2017). Release of dipeptidyl peptidase IV, a-amylase and a-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods. 35:531–539.
[66] Zhou, K., Sun, S. (2012). Production and functional characterisation of antioxidative hydrolysates from corn protein via enzymatic hydrolysis and ultrafiltration. Food Chemistry. 135 (3):1192–1197.
[67] Hall, F.G. and Jones, O.G. (2017). Functional properties of tropical banded cricket (Gryllodes sigillatus) protein hydrolysates. Food Chemistry. 224:414–422.
[68] Athukorala, Y. and Kim, K.N. (2006)b. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food and Chemical Toxicology. 44(7):1065–1074.