การกักเก็บเคอร์คูมินโดยการอบแห้งแบบพ่นฝอยโดยใช้ Tween 80 ร่วมกับไคโตซาน

Main Article Content

ชาลีดา บรมพิชัยชาติกุล
อวานี ฮามัด
สาริศา สุริยรักษ์

บทคัดย่อ

ในงานวิจัยนี้ศึกษาการใช้ Tween 80 ร่วมกับไคโตซาน (อัตราส่วน 1/0, 1/1, 1/2, 1/3 และ 0/1 %w/w) ในการกักเก็บสารเคอร์คูมินในรูปไมโครแคปซูลโดยการอบแห้งแบบพ่นฝอย ในการทดลองวิเคราะห์ค่าความหนืด ปริมาณของแข็งทั้งหมดของสารอิมัลชันที่ป้อนเข้า ปริมาณสารที่ได้สุทธิจากกระบวนการ และสมบัติทางเคมีกายภาพ (ค่ากิจกรรมของน้ำ ความชื้น ค่าการละลาย สี ความเข้มข้นของเคอร์คูมิน ประสิทธิภาพในการกักเก็บ และรูปถ่ายโครงสร้างของผงไมโครแคปซูล) รวมถึงค่าการต้านการเกิดออกซิเดชัน (DPPH และ FRAP) จากการทดลองพบว่าค่าความหนืดของสารอิมัลชันเคอร์คูมินที่ป้อนเข้าเพิ่มขึ้น (43.30-78.65 cP) เมื่อเพิ่มความเข้มข้นของไคโตซาน การใช้ Tween 80 ร่วมกับไคโตซานสามารถเพิ่มประสิทธิภาพการกักเก็บเคอร์คูมินในไมโครแคปซูลได้ แต่การเพิ่มความเข้มข้นของไคโตซาน กลับพบว่าลดปริมาณสารที่ได้สุทธิจากกระบวนการ (ร้อยละ 41.17-33.02) แต่ไม่มีนัยสำคัญ ฤทธิ์การต้านอนุมูลอิสระในการที่วัดด้วยวิธี DPPH มีแน้วโน้มลดลง (ประมาณร้อยละ 15) แต่ FRAP และค่าสี (L*, a* และ b*) ไม่แตกต่างอย่างมีนัยสำคัญ อีกทั้งพบรอยย่นบนผิวของไมโครแคปซูลของเคอร์คูมินเมื่อมองภายใต้กล้องจุลทรรศ์อิเล็กตรอน ในกรณีของตัวอย่างที่ไม่มีการเติม Tween 80 พบว่าตัวอย่างผงมีการเกาะกันเป็นก้อน ไม่มีรูปทรงแน่นอน โดยสรุปผงไมโครแคปซูลที่ได้จากการใช้ไคโตซานร่วมกับ Tween 80 ที่ อัตราส่วน 1:1 โดยน้ำหนัก มีประสิทธิภาพในการกักเก็บสูงที่สุด (ร้อยละ 57.48) รวมทั้งมีฤทธิ์การต้านการเกิดออกซิเดชัน ที่วัดโดยวิธี DPPH และ FRAP สูงสุด (49.82, 17.12 mM TE/g ตามลำดับ) ดังนั้นการใช้ Tween 80 ร่วมกับ ไคโตซาน เป็นสารเคลือบส่งผลเชิงบวกต่อสมบัติการกักเก็บเคอร์คูมินในไมโครแคปซูล

Article Details

รูปแบบการอ้างอิง
บรมพิชัยชาติกุล ช. ., ฮามัด อ. ., & สุริยรักษ์ ส. . (2020). การกักเก็บเคอร์คูมินโดยการอบแห้งแบบพ่นฝอยโดยใช้ Tween 80 ร่วมกับไคโตซาน. วารสารเทคโนโลยีการอาหาร มหาวิทยาลัยสยาม, 15(2), 96–109. สืบค้น จาก https://li01.tci-thaijo.org/index.php/JFTSU/article/view/236970
ประเภทบทความ
บทความวิจัย (Research Articles)

เอกสารอ้างอิง

Xu, X. Y., Meng, X., Li, S., Gan, R., Li, Y., and Li, H-B. (2018). Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients. 10(10): 1553 -1596. doi:10.3390/nu10101553

Ahmed, K., Li, Y., McClements, D. J., and Xiao, H. (2012). Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chemistry. 132(2): 799–807. doi:10.1016/j.foodchem.2011.11.039

Ballesteros, L. F., Ramirez, M.J., Orrego, C.E, Teixeira, J.A., and Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry. 237: 623–631. doi:10.1016/j.foodchem.2017.05.142

Shishir, M. R. I., and Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology. 65: 49–67. doi:10.1016/j.tifs.2017.05.00

Li, J., Hwang, I.C., Chen, X., and Park, H. J. (2016). Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility. Food Hydrocolloids. 60: 138–147. doi:10.1016/j.foodhyd.2016.03.016

O’Toole, M.G., Henderson, R. M., Soucy, P. A., Fasciotto, B. H., Hoblitzell, P. J., Keynton, R. S., Ehringer, W. D., and Gobin, A. S. (2012). Curcumin encapsulation in submicrometer spray-dried chitosan/tween 20 particles. Biomacromolecules. 13: 2309–2314. doi:10.1021/bm300564v

Deng, L., Kang, X., Liu, Y., Feng, F., and Zhang, H. (2017). Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chemistry. 231: 70–77. doi:10.1016/j.foodchem.2017.03.027

McCements, D. J., and Decker, E. (2018). Interfacial antioxidants: A review of natural and synthetic emulsifiers and coemulsifiers that can inhibit lipid oxidation. Journal of Agricultural and Food Chemistry. 66: 20–35. doi:10.1021/acs.jafc.7b05066

Kharat, M., Du, Z., Zhang, G., and McClements, D. J. (2017). Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. Journal of Agricultural and Food Chemistry. 65: 1525–1532. doi:10.1021/acs.jafc.6b04815

Dantas, D., Pasquali, M. A., Cavalcanti-Mata, M., Duarte, M. E., and Lisboa, H. M. (2018). Influence of spray drying conditions on the properties of avocado powder drink. Food Chemistry. 266: 284–291. doi:10.1016/j.foodchem.2018.06.016

AOAC. (2016) Official methods of analysis of AOAC International (20th ed). AOAC International, Rockville, Maryland, USA.

Martins, R. M., Pereira, S. V., Siqueira, S., Salomão, W. F., and Freitas, L. A. P. (2013). Curcuminoid content and antioxidant activity in spray dried microparticles containing turmeric extract. Food Research International. 50: 657–663. doi:10.1016/j.foodres.2011.06.030

Ahmed, M., Akter, M. S., Lee, J. C., and Eun, J. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT-Food Science & Technology. 43: 1307–1312. doi:10.1016/j.lwt.2010.05.014

Laokuldilok, N., Thakeow, P., Kopermsub, P., and Utama-Ang, N. (2015). Optimisation of microencapsulation of turmeric extract for masking flavour. Food Chemisty. 194: 695–704. doi:10.1016/j.foodchem.2015.07.150

Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und Technologie. 28: 25–30.

Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., and Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis. 19: 669–675. doi:10.1016/j.jfca.2006.01.003

Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science. 31: 603–632. doi:10.1016/j.progpolymsci.2006.06.001

El-Hefian, E. A., Khan. R. A., and Yahaya A. H. (2008). Study of the parameters affecting the viscosity of chitosan solution. Journal Chemical Society of Pakistan.30(4): 529–531

Li, Y., Ai, L., Yokoyama, W., Shoemaker, C. F., Wei, D., Ma, J., and Zhong, F. (2013). Properties of chitosan-microencapsulated orange oil prepared by spray-drying and its stability to detergents. Journal of Agricultural and Food Chemistry. 61: 3311–3319. doi:10.1021/jf305074q

Klaypradit, W., and Huang, Y. W. (2008). Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT - Food Science and Technology. 41:1133–1139. doi:10.1016/j.lwt.2007.06.014

Chuacharoen, T., Prasongsuk, S., and Sabliov, C. M. (2019). Effect of surfactant concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial utilization. Molecules. 24: 2744-2756. doi:10.3390/molecules24152744

Akolade, J. O., Oloyede, H. O. B., and Onyenekwe, P. C. (2017). Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. Journal of Functional Foods. 35: 584–594. doi:10.1016/j.jff.2017.06.023

Nuzzo, M., Millqvist-Fureby, A., Sloth, J., and Bergenstahl, B. (2015). Surface composition and morphology of particles dried individually and by spray drying. Drying Technology. 33(6): 757–767. doi:10.1080/07373937.2014.990566

Munoz-Ibanez, M., Nuzzo, M., Turchiuli, C., Bergenståhl, B., Dumoulin, E., and Millqvist-Fureby, A. (2016). The microstructure and component distribution in spray-dried emulsion particles. Food Structure. 8: 16–24. doi:10.1016/j.foostr.2016.05.001

Drapala, K. P., Auty, M. A. E., Mulvihill, D. M., and O’Mahony, J. A. (2017). Influence of emulsifier type on the spray-drying properties of model infant formula emulsions. Food Hydrocolloids. 69: 56–66. doi:10.1016/j.foodhyd.2016.12.024

Kumar, L. R. G., Chatterjee, N. S., Tejpal, C. S., Vishnu, K. V., Anas, K. K., Asha, K. K., Anandan, R., and Mathew, S. (2017). Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: Characterization and oxidative stability studies. International Journal of Biological Macromolecules. 104: 1986–1995. doi:10.1016/j.ijbiomac.2017.03.114

Normand, V., Subramaniam, A., Donnelly, J. and Bouquerand, P. E. (2013). Spray drying: Thermodynamics and operating conditions. Carbohydrate Polymers. 97: 489–495. doi:10.1016/j.carbpol.2013.04.096

Liu, W., Chen, X. D., Cheng, Z., and Selomulya, C. (2016). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering. 169: 189–195. doi:10.1016/j.jfoodeng.2015.08.034

Petruzzi, L., Corbo, M. R., Sinigaglia, M., and Bevilacqua, A. (2017). Microbial spoilage of foods: Fundamentals. The microbiological quality of food ed by Bevilacqua, A., Corbo, M.R., and Sinigaglia, M. Elsevier Ltd. doi:10.1016/B978-0-08-100502-6.00002-9

Boruah, B., Saikia, P. M., and Dutta, R. K. (2012). Binding and stabilization of curcumin by mixed chitosan-surfactant systems: A spectroscopic study. Journal of Photochemistry and Photobiology: A Chemistry. 245: 18–27. doi:10.1016/j.jphotochem.2012.07.004

Munoz-Ibanez, M., Azagoh, C., Dubey, B. N., Dumoulin, E., and Turchiuli, C. (2015). Changes in oil-in-water emulsion size distribution during the atomization step in spray-drying encapsulation. Journal of Food Engineering. 167: 122–132. doi:10.1016/j.jfoodeng.2015.02.008

Wu, M. H., Yan, H. H., Chen, Z. Q., and He, M. (2017). Effects of emulsifier type and environmental stress on the stability of curcumin emulsion. Journal of Dispersion Science and Technology. 38(10): 1375–1380. doi:10.1080/01932691.2016.1227713

Neves, M. I. L., Desobry-Banon, S, Perrone, I. T., Desobry, S., and Petit, J. (2019). Encapsulation of curcumin in milk powders by spray-drying: Physicochemistry, rehydration properties, and stability during storage. Powder Technology. 345: 601–607. doi:10.1016/j.powtec.2019.01.049

Schröder, J., Kleinhans, A., Serfert, Y., Drusch, S., Schuchmann, H. P., and Gaukel, V. (2012). Viscosity ratio: A key factor for control of oil drop size distribution in effervescent atomization of oil-in-water emulsions. Journal of Food Engineerig. 111: 265–271. doi:10.1016/j.jfoodeng.2012.02.023

Barzegar A. (2012). The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chemistry. 135: 1369–1376. doi:10.1016/j.foodchem.2012.05.070

Priyadarsini, K. I., Maity, D. K., Naik, G. H., Kumar, M. S., Unnikrishnan, M. K., Satav, J. G., and Mohan, H. (2003). Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biology & Medicine. 35(5): 475–484. doi:10.1016/S0891-5849(03)00325-3

Jovanovic, S. V., Steenken, S., Boone, C. W., and Simic, M. G. (1999). H-atom transfer is a preferred antioxidant mechanism of curcumin. Journal of American Chemical Society. 121: 9677–9681. doi:10.1021/ja991446m