Role of BKCa and SKCa channels in testosterone-induced nitric oxide release from human coronary artery endothelial cells

Authors

Keywords:

Calcium-activated potassium channel, human coronary artery endothelial cell, nitric oxide calorimetric assay, testosterone

Abstract

Testosterone is suggested to have beneficial and protective roles on cardiovascular system including vasodilation and lowering of blood pressure. Testosterone has been suggested to induce nitric oxide (NO) release from endothelial cells of different vascular origins. Information from previous studies provided that testosterone induces activating phosphorylation of endothelial nitric oxide synthase (eNOS) by acting through surface androgen receptor (sAR) and activating Src/PI3K/Akt-dependent pathway. A recent electrophysiological study in our laboratory using whole-cell patch-clamp technique demonstrated that testosterone-induced current mainly passed through large- and small-conductance Ca2+-activated K+ (BKCa and SKCa, respectively) channels. However, the involvement of BKCa and SKCa channels in testosterone-induced NO release was not elucidated. We herein examined the effect of testosterone-induced NO release and part of its mediators. We demonstrated that testosterone achieves its effect by acting through sAR and causes a dose-dependent increase in NO release from human coronary artery endothelial cells (HCAECs). This enhanced NO release was not affected by inhibitors of Gαi/o or PKA. Interestingly, although inhibitors of either BKCa or SKCa channels did not alter the testosterone-induced NO release, the combination of both BKCa and SKCa channel blockers significantly abolished the effect. These data suggest that testosterone induces NO release from HCAECs and its Ca2+-dependent pathway requires either BKCa or SKCa channel to function properly.

References

Writing Group Members; Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016; 133(4): e38-60. doi: 10.1161/CIR.0000000000000350

Herman SM, Robinson JT, McCredie RJ, Adams MR, Boyer MJ, Celermajer DS. Androgen deprivation is associated with enhanced endothelium-dependent dilatation in adult men. Arterioscler Thromb Vasc Biol. 1997; 17(10): 2004-9. doi: 10.1161/01.atv.17.10.2004

Mendoza SG, Zerpa A, Carrasco H, Colmenares O, Rangel A, Gartside PS, et al. Estradiol, testosterone, apolipoproteins, lipoprotein cholesterol, and lipolytic enzymes in men with premature myocardial infarction and angiographically assessed coronary occlusion. Artery. 1983; 12(1): 1-23.

Reckelhoff JF, Zhang H, Granger JP. Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension. 1998; 31(1Pt2): 435-9. doi: 10.1161/01.hyp.31.1.435

Nettleship JE, Jones RD, Channer KS, Jones TH. Testosterone and coronary artery disease. Front Horm Res. 2009; 37: 91-107. doi: 10.1159/000176047

Traish AM, Guay A, Feeley R, Saad F. The dark side of testosterone deficiency: I. Metabolic syndrome and erectile dysfunction. J Androl. 2009; 30(1): 10-22. doi: 10.2164/jandrol.108.005215

Rosano GM, Leonardo F, Pagnotta P, Pelliccia F, Panina G, Cerquetani E, et al. Acute anti-ischemic effect of testosterone in men with coronary artery disease. Circulation. 1999; 99(13): 1666-70. doi: 10.1161/01.cir.99.13.1666

Webb CM, Adamson DL, de Zeigler D, Collins P. Effect of acute testosterone on myocardial ischemia in men with coronary artery disease. Am J Cardiol. 1999; 83(3): 437-9, A9. doi: 10.1016/s0002-9149(98)00880-7

Webb CM, McNeill JG, Hayward CS, de Zeigler D, Collins P. Effects of testosterone on coronary vasomotor regulation in men with coronary heart disease. Circulation. 1999; 100(16): 1690-6. doi: 10.1161/01.cir.100.16.1690

Kang SM, Jang Y, Kim J, Chung N, Cho SY, Chae JS, et al. Effect of oral administration of testosterone on brachial arterial vasoreactivity in men with coronary artery disease. Am J Cardiol. 2002; 89(7): 862-4. doi: 10.1016/s0002-9149(02)02202-6

Kelly DM, Jones TH. Testosterone: a vascular hormone in health and disease. J Endocrinol. 2013; 217(3): R47-71. doi: 10.1530/JOE-12-0582

Ruamyod K, Watanapa WB, Shayakul C. Testosterone rapidly increases Ca2+-activated K+ currents causing hyperpolarization in human coronary artery endothelial cells. J Steroid Biochem Mol Biol. 2017; 168: 118-26. doi: 10.1016/j.jsbmb.2017.02.014

Liu PY, Death AK, Handelsman DJ. Androgens and cardiovascular disease. Endocr Rev. 2003; 24(3): 313-40. doi: 10.1210/er.2003-0005

Kohler R, Hoyer J. The endothelium-derived hyperpolarizing factor: insights from genetic animal models. Kidney Int. 2007; 72(2): 145-50. doi: 10.1038/sj.ki.5002303

Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med. 1990; 323(1): 27-36.

Campelo AE, Cutini PH, Massheimer VL. Cellular actions of testosterone in vascular cells: Mechanism independent of aromatization to estradiol. Steroids. 2012; 77(11): 1033-40. doi: 10.1016/j.steroids.2012.05.008

Goglia L, Tosi V, Sanchez AM, Flamini MI, Fu XD, Zullino S, et al. Endothelial regulation of eNOS, PAI-1 and t-PA by testosterone and dihydrotestosterone in vitro and in vivo. Mol Hum Reprod. 2010; 16(10): 761-9. doi: 10.1093/molehr/gaq049

Yu J, Akishita M, Eto M, Koizumi H, Hashimoto R, Ogawa S, et al. Src kinase-mediates androgen receptor-dependent non-genomic activation of signaling cascade leading to endothelial nitric oxide synthase. Biochem Biophys Res Commun. 2012; 424(3): 538-43. doi: 10.1016/j.bbrc.2012.06.151

Yu J, Akishita M, Eto M, Ogawa S, Son BK, Kato S, et al. Androgen receptor-dependent activation of endothelial nitric oxide synthase in vascular endothelial cells: role of phosphatidylinositol 3-kinase/akt pathway. Endocrinology. 2010; 151(4): 1822-8. doi: 10.1210/en.2009-1048

Kelm M. Nitric oxide metabolism and breakdown. Biochim Biophys Acta. 1999; 1411(2-3): 273-89. doi: 10.1016/s0005-2728(99)00020-1

Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007; 87(1): 315-424. doi: 10.1152/physrev.00029.2006

Noble MA, Munro AW, Rivers SL, Robledo L, Daff SN, Yellowlees LJ, et al. Potentiometric analysis of the flavin cofactors of neuronal nitric oxide synthase. Biochemistry-Us. 1999; 38(50): 16413-8. doi: 10.1021/bi992150w

Stuehr D, Pou S, Rosen GM. Oxygen reduction by nitric-oxide synthases. J Biol Chem. 2001; 276(18): 14533-6. doi: 10.1074/jbc.R100011200

Moncada S. Nitric oxide in the vasculature: physiology and pathophysiology. Ann N Y Acad Sci. 1997; 811: 60-7; discussion 67-9. doi: 10.1111/j.1749-6632.1997.tb51989.x

Vanhoutte PM, Zhao YZ, Xu AM, Leung SWS. Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res. 2016; 119(2): 375-96. doi: 10.1161/CIRCRESAHA.116.306531

Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn RE, Shaul PW. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest. 1999; 103(3): 401-6. doi: 10.1172/JCI5347

Haynes MP, Sinha D, Russell KS, Fulton D, Morales-Ruiz M, Sessa WM, et al. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-AKT pathway in human endothelial cells. Circulation. 2000; 102(18): 225-6. doi: 10.1161/01.res.87.8.677

Kim HP, Lee JY, Jeong JK, Bae SW, Lee HK, Jo I. Nongenomic stimulation of nitric oxide release by estrogen is mediated by estrogen receptor alpha localized in caveolae. Biochem Bioph Res Co. 1999; 263(1): 257-62. doi: 10.1006/bbrc.1999.1348

Russell KS, Haynes MP, Caulin-Glaser T, Rosneck J, Sessa WC, Bender JR. Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells - Effects on calcium sensitivity and NO release. J Biol Chem. 2000; 275(7): 5026-30. doi: 10.1074/jbc.275.7.5026

Russell KS, Haynes MP, Sinha D, Clerisme E, Bender JR. Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. P Natl Acad Sci USA. 2000; 97(11): 5930-5. doi: 10.1073/pnas.97.11.5930

Xing DQ, Nozell S, Chen YF, Hage F, Oparil S. Estrogen and mechanisms of vascular protection. Arterioscl Throm Vas. 2009; 29(3): 289-95. doi: 10.1161/ATVBAHA.108.182279

Traish AM, Saad F, Feeley RJ, Guay A. The dark side of testosterone deficiency: III. Cardiovascular disease. J Androl. 2009; 30(5): 477-94. doi: 10.2164/jandrol.108.007245

Chou TM, Sudhir K, Hutchison SJ, Ko E, Amidon TM, Collins P, et al. Testosterone induces dilation of canine coronary conductance and resistance arteries in vivo. Circulation. 1996; 94(10): 2614-9. doi: 10.1161/01.cir.94.10.2614

Deenadayalu VP, White RE, Stallone JN, Gao X, Garcia AJ. Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. Am J Physiol Heart Circ Physiol. 2001; 281(4): H1720-7. doi: 10.1152/ajpheart.2001.

4.H1720

Ding AQ, Stallone JN. Testosterone-induced relaxation of rat aorta is androgen structure specific and involves K+ channel activation. J Appl Physiol (1985). 2001; 91(6): 2742-50. doi: 10.1152/jappl.2001.91.6.2742

English KM, Jones RD, Jones TH, Morice AH, Channer KS. Testosterone acts as a coronary vasodilator by a calcium antagonistic action. J Endocrinol Invest. 2002; 25(5): 455-8. doi: 10.1007/BF03344037

Rowell KO, Hall J, Pugh PJ, Jones TH, Channer KS, Jones RD. Testosterone acts as an efficacious vasodilator in isolated human pulmonary arteries and veins: evidence for a biphasic effect at physiological and supra-physiological concentrations. J Endocrinol Invest. 2009; 32(9): 718-23. doi: 10.1007/BF03346526

Tep-areenan P, Kendall DA, Randall MD. Testosterone-induced vasorelaxation in the rat mesenteric arterial bed is mediated predominantly via potassium channels. Br J Pharmacol. 2002; 135(3): 735-40. doi: 10.1038/sj.bjp.0704522

Corona G, Petrone L, Fisher AD, Mansani R, Bandini E, Boddi V, et al. Six-month administration of 1% testosterone gel is able to restore erectile function in hypogonadal patients with erectile dysfunction. Arch Ital Urol Androl. 2008; 80(3): 103-8.

Khaw KT, Barrett-Connor E. Blood pressure and endogenous testosterone in men: an inverse relationship. J Hypertens. 1988; 6(4): 329-32.

Hughes GS, Mathur RS, Margolius HS. Sex steroid hormones are altered in essential hypertension. J Hypertens. 1989; 7(3): 181-7.

Jaffe A, Chen Y, Kisch ES, Fischel B, Alon M, Stern N. Erectile dysfunction in hypertensive subjects. Assessment of potential determinants. Hypertension. 1996; 28(5): 859-62. doi: 10.1161/01.hyp.28.5.859

Phillips GB, Jing TY, Resnick LM, Barbagallo M, Laragh JH, Sealey JE. Sex hormones and hemostatic risk factors for coronary heart disease in men with hypertension. J Hypertens. 1993; 11(7): 699-702. doi: 10.1097/00004872-199307000-00003

Jones TH. Testosterone deficiency: a risk factor for cardiovascular disease? Trends Endocrinol Metab. 2010; 21(8): 496-503. doi: 10.1016/j.tem.2010.03.002

Khaw KT, Dowsett M, Folkerd E, Bingham S, Wareham N, Luben R, et al. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) Prospective Population Study. Circulation. 2007; 116(23): 2694-701. doi: 10.1161/CIRCULATIONAHA.107.719005

Laughlin GA, Barrett-Connor E, Bergstrom J. Low serum testosterone and mortality in older men. J Clin Endocrinol Metab. 2008; 93(1): 68-75. doi: 10.1210/jc.2007-1792

Malkin CJ, Pugh PJ, Morris PD, Asif S, Jones TH, Channer KS. Low serum testosterone and increased mortality in men with coronary heart disease. Heart. 2010; 96(22): 1821-5. doi: 10.1136/hrt.2010.195412

Ponikowska B, Jankowska EA, Maj J, Wegrzynowska-Teodorczyk K, Biel B, Reczuch K, et al. Gonadal and adrenal androgen deficiencies as independent predictors of increased cardiovascular mortality in men with type II diabetes mellitus and stable coronary artery disease. Int J Cardiol. 2010; 143(3): 343-8. doi: 10.1016/j.ijcard.2009.03.072

Vikan T, Schirmer H, Njolstad I, Svartberg J. Endogenous sex hormones and the prospective association with cardiovascular disease and mortality in men: the Tromsø Study. Eur J Endocrinol. 2009; 161(3): 435-42. doi: 10.1530/EJE-09-0284

Jones TH. Effects of testosterone on Type 2 diabetes and components of the metabolic syndrome. J Diabetes. 2010; 2(3): 146-56. doi: 10.1111/j.1753-0407.2010.00085.x

Jones TH, Saad F. The effects of testosterone on risk factors for, and the mediators of, the atherosclerotic process. Atherosclerosis. 2009; 207(2): 318-27. doi: 10.1016/j.atherosclerosis.2009.04.016

Costarella CE, Stallone JN, Rutecki GW, Whittier FC. Testosterone causes direct relaxation of rat thoracic aorta. J Pharmacol Exp Ther. 1996; 277(1): 34-9. doi: 10.1016/S0022-3565(25)12828-0

Arnal JF, Dinh-Xuan AT, Pueyo M, Darblade B, Rami J. Endothelium-derived nitric oxide and vascular physiology and pathology. Cell Mol Life Sci. 1999; 55(8-9): 1078-87. doi: 10.1007/s000180050358

Furchgott RF. Endothelium-derived relaxing factor: Discovery, early studies, and identification as nitric oxide. Bioscience Rep. 1999; 19(4): 235-51. doi: 10.1023/a:1020537506008

Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995; 377(6546): 239-42. doi: 10.1038/377239a0

Ruamyod K, Watanapa WB, Shayakul C. Characterization of ion channels in human coronary artery endothelial cells. J Physiol Biomed Sci. 2015; 28(1): 15-21. https://li01.tci-thaijo.org/index.php/j-pbs/article/view/250759

Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev. 2001; 81(4): 1415-59. doi: 10.1152/physrev.2001.81.4.1415

Nilius B, Viana F, Droogmans G. Ion channels in vascular endothelium. Annu Rev Physiol. 1997; 59: 145-70. doi: 10.1146/annurev.physiol.59.1.145

Garland C. Role of endothelial ion channels in the resistance artery function. Neurophysiology. 2003; 35: 161-8. doi: 10.1023/B:NEPH.0000008775.00302.6e

Wang HG, Pathan N, Ethell IM, Krajewski S, Yamaguchi Y, Shibasaki F, et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science. 1999; 284(5412): 339-43. doi: 10.1126/science.284.5412.339

Busse R, Mülsch A. Calcium-dependent nitric oxide synthesis in endothelial cytosol is mediated by calmodulin. FEBS Lett. 1990; 265(1-2): 133-6. doi: 10.1016/0014-5793(90)80902-u

Triggle CR, Samuel SM, Ravishankar S, Marei I, Arunachalam G, Ding H. The endothelium: influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol. 2012; 90(6): 713-38. doi: 10.1139/y2012-073

Förstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006; 113(13): 1708-14. doi: 10.1161/CIRCULATIONAHA.105.602532

Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012; 33(7): 829-37, 37a-37d. doi: 10.1093/eurheartj/ehr304

Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988; 333(6174): 664-6. doi: 10.1038/333664a0

Dessy C, Feron O, Balligand JL. The regulation of endothelial nitric oxide synthase by caveolin: a paradigm validated in vivo and shared by the 'endothelium-derived hyperpolarizing factor'. Pflügers Arch. 2010; 459(6): 817-27. doi: 10.1007/s00424-010-0815-3

Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflügers Arch. 2010; 459(6): 793-806. doi: 10.1007/s00424-009-0767-7

Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflügers Arch. 2010; 459(6): 807-16. doi: 10.1007/s00424-009-0765-9

Cai ZJ, Lu QL, Ding Y, Wang QL, Xiao L, Song P, et al. Endothelial nitric oxide synthase-derived nitric oxide prevents dihydrofolate reductase degradation via promoting S-nitrosylation. Arterioscl Throm Vas. 2015; 35(11): 2366-73. doi: 10.1161/ATVBAHA.115

.305796

d'Uscio LV. eNOS uncoupling in pulmonary hypertension. Cardiovasc Res. 2011; 92(3): 359-60. doi: 10.1093/cvr/cvr270

Maron BA, Michel T. Subcellular localization of oxidants and redox modulation of endothelial nitric oxide synthase. Circ J. 2012; 76(11): 2497-512. doi: 10.1253/circj.cj-12-1207

Zhao YZ, Vanhoutte PM, Leung SWS. Vascular nitric oxide: beyond eNOS. J Pharmacol Sci. 2015; 129(2): 83-94. doi: 10.1016/j.jphs.2015.09.002

Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999; 399(6736): 601-5. doi: 10.1038/21224

Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R. Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res. 2001; 88(11): E68-75. doi: 10.1161/hh1101.092677

Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999; 399(6736): 597-601. doi: 10.1038/21218

Gallis B, Corthals GL, Goodlett DR, Ueba H, Kim F, Presnell SR, et al. Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. J Biol Chem. 1999; 274(42): 30101-8. doi: 10.1074/jbc.274.42.30101

Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, et al. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001; 276(21): 17625-8. doi: 10.1074/jbc.C100122200

Flavahan NA, Vanhoutte PM. Endothelial cell signaling and endothelial dysfunction. Am J Hypertens. 1995; 8(5Pt2): 28S-41S. doi: 10.1016/0895-7061(95)00030-s

Gratton JP, Fontana J, O'Connor DS, Garcia-Cardena G, McCabe TJ, Sessa WC. Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem. 2000; 275(29): 22268-72. doi: 10.1074/jbc.M001644200

Losel RM, Falkenstein E, Feuring M, Schultz A, Tillmann HC, Rossol-Haseroth K, et al. Nongenomic steroid action: controversies, questions, and answers. Physiol Rev. 2003; 83(3): 965-1016. doi: 10.1152/physrev.00003.2003

Hanke H, Lenz C, Hess B, Spindler KD, Weidemann W. Effect of testosterone on plaque development and androgen receptor expression in the arterial vessel wall. Circulation. 2001; 103(10): 1382-5. doi: 10.1161/01.cir.103.10.1382

Nathan L, Shi W, Dinh H, Mukherjee TK, Wang X, Lusis AJ, et al. Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. Proc Natl Acad Sci U S A. 2001; 98(6): 3589-93. doi: 10.1073/pnas.051003698

Sasano H, Murakami H, Shizawa S, Satomi S, Nagura H, Harada N. Aromatase and sex steroid receptors in human vena cava. Endocr J. 1999; 46(2): 233-42. doi: 10.1507/endocrj.46.233

Francis M, Waldrup JR, Qian X, Solodushko V, Meriwether J, Taylor MS. Functional tuning of intrinsic endothelial Ca2+ dynamics in swine coronary arteries. Circ Res. 2016; 118(7): 1078-90. doi: 10.1161/CIRCRESAHA.115.308141

Pires PW, Earley S. No Static at All: Tuning into the complexities of Ca2+ signaling in the endothelium. Circ Res. 2016; 118(7): 1042-4. doi: 10.1161/CIRCRESAHA.116.308519

Prendergast C, Quayle J, Burdyga T, Wray S. Atherosclerosis affects calcium signalling in endothelial cells from apolipoprotein E knockout mice before plaque formation. Cell Calcium. 2014; 55(3): 146-54. doi: 10.1016/j.ceca.2014.02.012

Rohde D, Ritterhoff J, Voelkers M, Katus HA, Parker TG, Most P. S100A1: a multifaceted therapeutic target in cardiovascular disease. J Cardiovasc Transl Res. 2010; 3(5): 525-37. doi: 10.1007/s12265-010-9211-9

Scheitlin CG, Julian JA, Shanmughapriya S, Madesh M, Tsoukias NM, Alevriadou BR. Endothelial mitochondria regulate the intracellular Ca2+ response to fluid shear stress. Am J Physiol Cell Physiol. 2016; 310(6): C479-90. doi: 10.1152/ajpcell.00171.2015

Zhang AY, Li PL. Vascular physiology of a Ca2+ mobilizing second messenger - cyclic ADP-ribose. J Cell Mol Med. 2006; 10(2): 407-22. doi: 10.1111/j.1582-4934.2006.tb00408.x

Chen Z, Bakhshi FR, Shajahan AN, Sharma T, Mao M, Trane A, et al. Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Mol Biol Cell. 2012; 23(7): 1388-98. doi: 10.1091/mbc.E11-09-0811

Stankevicius E, Dalsgaard T, Kroigaard C, Beck L, Boedtkjer E, Misfeldt MW, et al. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat. J Pharmacol Exp Ther. 2011; 339(3): 842-50. doi: 10.1124/jpet.111.179242

Vang A, Mazer J, Casserly B, Choudhary G. Activation of endothelial BKCa channels causes pulmonary vasodilation. Vascul Pharmacol. 2010; 53(3-4): 122-9. doi: 10.1016/j.vph.2010.05.001

Bychkov R, Burnham MP, Richards GR, Edwards G, Weston AH, Feletou M, et al. Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium: relevance to EDHF. Br J Pharmacol. 2002; 137(8): 1346-54. doi: 10.1038/sj.bjp.0705057

Gauthier KM, Liu C, Popovic A, Albarwani S, Rusch NJ. Freshly isolated bovine coronary endothelial cells do not express the BK Ca channel gene. J Physiol. 2002; 545(Pt3): 829-36. doi: 10.1113/jphysiol.2002.029843

Chiang HT, Wu SN. Inhibition of large-conductance calcium-activated potassium channel by 2-methoxyestradiol in cultured vascular endothelial (HUV-EC-C) cells. J Membr Biol. 2001; 182(3): 203-12. doi: 10.1007/s00232-001-0044-y

Erdogan A, Most AK, Wienecke B, Fehsecke A, Leckband C, Voss R, et al. Apigenin-induced nitric oxide production involves calcium-activated potassium channels and is responsible for antiangiogenic effects. J Thromb Haemost. 2007; 5(8): 1774-81. doi: 10.1111/j.1538-7836.2007.02615.x

Frieden M, Graier WF. Subplasmalemmal ryanodine-sensitive Ca2+ release contributes to Ca2+-dependent K+ channel activation in a human umbilical vein endothelial cell line. J Physiol. 2000; 524 Pt3: 715-24. doi: 10.1111/j.1469-7793.2000.00715.x

Kawasaki J, Davis GE, Davis MJ. Regulation of Ca2+-dependent K+ current by alphavbeta3 integrin engagement in vascular endothelium. J Biol Chem. 2004; 279(13): 12959-66. doi: 10.1074/jbc.M313791200

Tang G, Wang R. Differential expression of KV and KCa channels in vascular smooth muscle cells during 1-day culture. Pflügers Arch. 2001; 442(1): 124-35. doi: 10.1007/s004240100520

Wang XL, Ye D, Peterson TE, Cao S, Shah VH, Katusic ZS, et al. Caveolae targeting and regulation of large conductance Ca2+-activated K+ channels in vascular endothelial cells. J Biol Chem. 2005; 280(12): 11656-64. doi: 10.1074/jbc.M410987200

Wiecha J, Reineker K, Reitmayer M, Voisard R, Hannekum A, Mattfeldt T, et al. Modulation of Ca2+-activated K+ channels in human vascular cells by insulin and basic fibroblast growth factor. Growth Horm IGF Res. 1998; 8(2): 175-81. doi: 10.1016/s1096-6374(98)80108-1

Downloads

Published

2025-12-31

How to Cite

1.
Chatchavalvanich S, Aung KP. Role of BKCa and SKCa channels in testosterone-induced nitric oxide release from human coronary artery endothelial cells. J Physiol Biomed Sci [internet]. 2025 Dec. 31 [cited 2026 Jan. 2];36(2):11-2. available from: https://li01.tci-thaijo.org/index.php/j-pbs/article/view/270306

Issue

Section

Invited Article