Physicochemical Characterization and Thermal Decomposition Kinetic of Sugarcane Leave using Thermogravimetric Analysis

Main Article Content

Jarunee Khempila
Pumin Kongto
Chatyapha Ketwong

Abstract

In this study, the fuel characteristics, thermal decomposition behavior, and kinetics of sugarcane leaves (Khon Kaen 3) were investigated as a solid biofuel. Characterization of the sugarcane leaves was undertaken in terms of chemical composition, proximate and ultimate analyses, heating value, and functional group. Thermal decomposition (25-800 °C) was analyzed in nitrogen atmospheres by non-isothermal thermogravimetry analysis using heating rates of 5, 10, and 20 °C/min. The kinetic analysis was carried out via two model-free methods: the Kissinger–Akahira–Sunose (KAS) and the Flynn–Wall–Ozawa (FWO). The results showed that sugarcane leaves contained the highest value of cellulose (41.41%), followed by hemicellulose (36.68%), and lignin (6.39%). The fixed carbon, volatile matter, ash, and higher heating value of sugarcane leaves were 14.38%, 69.63%, 9.04%, and 17.76 MJ/kg, respectively. The atomic oxygen-to-carbon (O/C) and hydrogen-to-carbon (H/C) ratios of sugarcane leaves were 0.77 and 1.64, respectively, which are not suitable for use as solid fuels. Additionally, the hydroxyl group oscillations were presented in sugarcane leaves; therefore, the quality of sugarcane leaves should be improved. The kinetics analysis showed that the mean activation energies of the KAS and the FWO models were similar, namely 197.66 kJ/mol and 197.88 kJ/mol, respectively.

Article Details

How to Cite
Khempila, J., Kongto, P., & Ketwong, C. (2024). Physicochemical Characterization and Thermal Decomposition Kinetic of Sugarcane Leave using Thermogravimetric Analysis. Rajamangala University of Technology Srivijaya Research Journal, 16(2), 256–544. Retrieved from https://li01.tci-thaijo.org/index.php/rmutsvrj/article/view/258521
Section
Research Article

References

Abu Ghalia, M. and Dahman, Y. 2017. 15-Synthesis and utilization of natural fiber-reinforced poly (lactic acid) bionanocomposites, pp. 313-345. In Jawaid, M., Md Tahir, P. and Saba, N., eds. Woodhead Publishing Series in Composites Science and Engineering. Woodhead Publishing, Sawston, UK.

Ahmad, R., Hamidin, N. and Md Ali, U.F. 2013. Effect of dolomite on pyrolysis of rice straw. Advanced Materials Research 795: 170-173.

Alias, N., Ibrahim, N., Hamid, M.K., Hasbullah, H., Ali, R.R., Sadikin, A.N. and Asli, U.A. 2014. Thermogravimetric analysis of rice husk and coconut pulp for potential biofuel production by flash pyrolysis. The Malaysian Journal of Analytical Sciences 18(3): 705-710.

Arranz, J.I., Miranda, M.T., Montero, I. and Sepulveda, F.J. 2021. Thermal Study and Emission Characteristics of Rice Husk Using TG-MS. Materials 14(20): 6203.

Barzegar, R., Yozgatligil, A., Olgun, H. and Atimtay, A.T. 2020. TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres. Journal of the Energy Institute 93(3): 889-898.

Brachi, P., Miccio, F., Miccio, M. and Ruoppolo, G. 2016. Torrefaction of tomato peel residues in a fluidized bed of inert particles and a fixed-bed reactor. Energy Fuels 30: 4858-4868.

Cai, J., Wu, W., Liu, R. and Huber, G.W. 2013. A distributed activation energy model for the pyrolysis of lignocellulosic biomass. Green Chemistry 15(5): 1331-1340.

Castellanos, A., Monteiro de Pinho, J., Leiroz, A. and Cruz, M. 2012. Detailed one-dimensional model for biomass gasification in a bubbling fluidized bed, pp. 1-8. In 14th Brazilian Congress of Thermal Sciences and Engineering. Universidade Federal Fluminense, Rio de Janeiro, Brazil.

Chatrattanawet, N., Kanjanasorn, W., Authayanun, S., Saebea, D. and Patcharavorachot, Y. 2018. Biomass Steam Gasification of Sugarcane Leftover for Green Diesel Production. Chemical Engineering Transactions 70: 1693-1698.

Ciuta, S., Patuzzi, F., Baratieri, M. and Castaldi, M.J. 2014. Biomass energy behavior study during pyrolysis process by intraparticle gas sampling. Journal of Analytical and Applied Pyrolysis 108: 316-322.

Demirbas, A. 2001. Relationships between lignin contents and heating values of biomass. Energy Conversion and Management 42(2): 183-188.

Dhyani, V. and Bhaskar, T. 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy 129: 695-716.

Dietenberger, M.A. and Hasburgh, L.E. 2016. Wood Products: Thermal Degradation and Fire, pp. 9712-9716. In White, R.H. and Dietenberger, M.A., eds. Encyclopedia of Materials: Science and Technology. USDA Forest Products Laboratory, Madison, WI, USA.

Doyle, C.D. 1962. Estimating isothermal life from thermogravimetric data. Journal of Applied Polymer Science 6(24): 639-642.

Franco, H.C.J., Pimenta, M.T.B., Carvalho, J.L.N., Graziano Magalhaes, P.S., Rossell, C.E.V. and Braunbeck, O.A. 2013. Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Scientia Agricola 70(5): 305-312.

Friedl, A., Padouvas, E., Rotter, H. and Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Analytica Chimica Acta 544: 191-198.

Goering, H.K. and Van Soest, P.J. 1970. Agricultural Handbook No. 379. Agricultural Research Service, Washington, D.C., USA.

He, Q., Ding, L., Gong, Y., Li, W., Wei, J. and Yu, G. 2019. Effect of torrefaction on pinewood pyrolysis kinetics and thermal behavior using thermogravimetric analysis. Bioresource Technology 280: 104-111.

Ikegwu, U.M., Ozonoh, M. and Daramola, M.O. 2021. Kinetic Study of the Isothermal Degradation of Pine Sawdust during Torrefaction Process. ACS Omega 6(16): 10759-10769.

Jahirul, M.I., Rasul, M.G., Chowdhury, A.A. and Ashwath, N. 2012. Biofuels Production through Biomass Pyrolysis-A Technological Review. Energies 5(12): 4952-5001.

Kamonwat, N., Pongtanawat, K., Wasawat, K., Parinvadee, C., Bunyarit, P., Duangta, K. and Prasert, P. 2021. Upgrading properties of biochar fuel derived from cassava rhizome via torrefaction: Effect of sweeping gas atmospheres and its economic feasibility. Case Studies in Thermal Engineering 23: 100823.

Kaur, R., Gera, P., Jha, M.K. and Bhaskar, T. 2018. Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology 250: 422-428.

Kongkaew, N., Pruksakit, W. and Patumsawad, S. 2015. Thermogravimetric Kinetic Analysis of the Pyrolysis of Rice Straw. Energy Procedia 79: 663-670.

Kumar, M., Sabbarwal, S., Mishra, P.K. and Upadhyay, S.N. 2019. Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies. Bioresource Technology 279: 262-270.

Latimer, G.W. 2016. Official methods of analysis of AOAC INTERNATIONAL. 20th ed. Rockville, Maryland, USA.

Mamleev, V., Bourbigot, S., Le Bras, M., Yvon, J. and Lefebvre, J. 2006. Model-free method for evaluation of activation energies in modulated thermogravimetry and analysis of cellulose decomposition. Chemical Engineering Science 61(4): 1276-1292.

Maryana, R., Ma’rifatun, D., Wheni, A.I., Satriyo, K.W. and Angga Rizal, W. 2014. Alkaline Pretreatment on Sugarcane Bagasse for Bioethanol Production. Energy Procedia 47: 250-254.

Mason, P.J., Furtado, A., Marquardt, A., Hodgson-Kratky, K., Hoang, N.V., Botha, F.C., Papa, G., Mortimer, J.C., Simmons, B. and Henry, R.J. 2020. Variation in sugarcane biomass composition and enzymatic saccharification of leaves, internodes and roots. Biotechnol Biofuels 13: 201.

Nhuchhen, D., Basu, P. and Acharya, B. 2014. A Comprehensive Review on Biomass Torrefaction. International Journal of Renewable Energy & Biofuels 2014: 506376.

Novaes, E., Kirst, M., Chiang, V., Winter-Sederoff, H. and Sederoff, R. 2010. Lignin and biomass: A negative correlation for wood formation and lignin content in trees. Plant Physiology 154(2): 555-561.

Okot, D.K., Bilsborrow, P.E., Phan, A.N. and Manning, D.A.C. 2023. Kinetics of maize cob and bean strawpyrolysis and combustion. Heliyon 9(6): e17236.

Osvalda Senneca. 2007. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Processing Technology 88(1): 87-97.

Owonubi, S.J., Agwuncha, S.C., Malima, N.M., Shombe, G.B., Makhatha, E.M. and Neerish, R. 2021. Non-woody Biomass as Sources of Nanocellulose Particles: A Review of Extraction Procedures. Frontiers in Energy Research 9: 608825.

Peng, J.H., Bi, H.T., Sokhansanj, S. and Lim, J.C. 2012. A Study of Particle Size Effect on Biomass Torrefaction and Densification. Energy & Fuels 26(6): 3826-3839.

Pereira, S.C., Maehara, L., Machado, C.M.M. and Farinas, C.S. 2015. 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnology for Biofuels 8(44):1-16.

Phuakpunk, K., Chalermsinsuwan, B. and Assabumrungrat, S. 2020. Comparison of chemical reaction kinetic models for corn cob pyrolysis. Energy Reports 6: 168-178.

Rattanapreechachai, S. 2023. Information on biomass fuel purchases for various types of Thailand biomass power stations in 2022. Department of Alternative Energy Development and Efficiency. Available Source: https://webkc.dede.go.th/testmax/ node/6248, August 15, 2023. (in Thai)

Reza, M.T., Emerson, R., Uddin, M.H., Gresham, G. and Coronella, C. 2014. Ash reduction of corn stover by mild hydrothermal preprocessing. Biomass Conversion and Biorefinery 5: 21-31.

Reza, M.T., Uddin, M.H., Lynam, J.G. and Coronella, C.J. 2014. Engineered pellets from dry torrefied and HTC biochar blends. Biomass and Bioenergy 63: 229-238.

Sharara, M. and Sadaka, S. 2014. Thermogravimetric Analysis of Swine Manure Solids Obtained from Farrowing, and Growing-Finishing Farms. Journal of Sustainable Bioenergy Systems 4(1): 75-86.

Thomas, S.C. and Martin, A.R. 2012. Carbon content of tree tissues: a synthesis. Forests 3(2): 332-352.

Toptas, A., Yildirim, Y., Duman, G. and Yanik, J. 2015. Combustion behavior of different kinds of torrefied biomass and their blends with lignite. Bioresource Technology 177: 328-336.

Tu, R., Jiang, E., Yan, S., Xu, X. and Rao, S. 2018. The pelletization and combustion properties of terrified Camellia shell via dry and hydrothermal torrefaction: A comparative evaluation. Bioresource Technology 264: 78-89.

Tumuluru, J.S. 2015. Comparison of Chemical Composition and Energy Property of Torrefied Switchgrass and Corn Stover. Frontiers in Energy Research 3: 1-11.

Van Soest, P.J., Robertson, J.B. and Lewis, B.A. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 3583-3597.

Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C. and Sbirrazzuoli, N. 2011. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta 520(1): 1-19.

Wang, Y., Qiu, L., Zhu, M., Sun, G., Zhang, T. and Kang, K. 2019. Comparative Evaluation of Hydrothermal Carbonization and Low Temperature Pyrolysis of Eucommia ulmoides Oliver for the Production of Solid Biofuel. Scientific Reports 9(1): 5535.

Wang, Y., Tan, H., Wang, X., Du, W., Mikulcic, H. and Duic, N. 2017. Study on extracting available salt from straw/woody biomass ashes and predicting its slagging/fouling tendency. Journal of Cleaner Production 155: 164-171.

Waters, C.L., Janupala, R.R., Mallinson, R.G. and Lobban, L.L. 2017. Staged thermal fractionation for segregation of lignin and cellulose pyrolysis products: An experimental study of residence time and temperature effects. Journal of Analytical and Applied Pyrolysis 126: 380-389.

Wu, K.T., Tsai, C.J., Chen, C.S. and Chen, H.W. 2012. The characteristics of torrefied microalgae. Applied Energy 100: 52-57.

Yadav, K., Tyagi, M., Kumari, S. and Jagadevan, S. 2019. Influence of Process Parameters on Optimization of Biochar Fuel Characteristics Derived from Rice Husk: A Promising Alternative Solid Fuel. BioEnergy Research 12(4): 1052-1065.

Yuan, X., He, T., Cao, H. and Yuan, Q. 2017. Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods. Renewable Energy 107: 489-496.

Zhang, J., Sekyere, D.T., Niwamanya, N., Huang, Y., Barigye, A. and Tian, Y. 2022. Study on the Staged and Direct Fast Pyrolysis Behavior of Waste Pine Sawdust Using High Heating Rate TG-FTIR and Py-GC/MS. ACS Omega 7(5): 4245-4256.

Zheng, A., Zhao, Z., Chang, S., Huang, Z., Zhao, K., Wei, G., He, F. and Li, H. 2015. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs. Bioresource Technology 176: 15-22.

Zhuang, J., Li, M., Pu, Y., Ragauskas, A.J. and Yoo, C.G. 2020. Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. Applied Sciences 10(12): 4345.