DNA Marker for Selection of Plant Disease Resistance Variety
DOI:
https://doi.org/10.14456/thaidoa-agres.2020.16Keywords:
DNA marker, disease resistance, major gene, minor gene, gene pyramidingAbstract
Plant diseases are important factor in plant production. They reduce yield and lead to heavy use of chemicals to keep them under control. Genetic resistance is a potent alternative and environmental friendly disease control approach. One of the important tools used to establish genetic resistance of plant is DNA marker. The uses of DNA markers related to targeted agricultural traits, such as high productivity, resistance to disease and insect, as tools for selection will improve the efficiency of plant breeding. Disease resistance of plants can be divided into 2 types. Type 1 is complete resistance controlled by major gene(s) such as Resistance gene (R gene). R gene plays an important role in the recognition of gene products from the pathogen. Type 2 is partial resistance controlled by multiple minor genes, which is quantitative in characteristic. Pyramiding of major and minor genes together is a strategy to develop durable resistance to meet the challenge that pathogens often adapt and overcome genetic resistance. In this review, the information about the uses of DNA markers in plant breeding, major and minor genes responsible for plant disease resistance systems as well as strategies for establishing durable disease resistance is presented. In addition, examples of marker-assisted selection in order to develop resistant varieties for certain diseases in soybean, cassava and potato are presented.
References
จีราพร แก่นทรัพย์ สมศักดิ์ ศรีสมบุญ และจุลภาค คุ้นวงศ์. 2554. การคัดเลือกถั่วเหลืองพันธุ์ถั่วเหลืองต้านทานโรคราสนิม (Phakopsora pachyrhizi, T. P. Syd.) โดยใช้เครื่องหมายโมเลกุล. วารสารวิชาการเกษตร. (29)1: 2-11.
สมศักดิ์ ศรีสมบุญ มณฑา นันทพันธ์ จุลภาค คุ้นวงศ์ ฉัฐพร คุ้นวงศ์ อาภาณี โภคประเสริฐ สิทธิ์ แดงประดับวิระศักดิ์ เทพจันทร์ ให้พร กิตติกูล ศุภชัย แก้วมีชัย ธนิต โสภโณดร เทวา เมาลานนท์ และอลงกรณ์ กรณ์ทอง. 2548. การใช้ DNA Marker ในการศึกษาตำแหน่งยีนต้านทานโรคราสนิมถั่วเหลือง. หน้า 101-110. ใน:ผลงานวิจัยเพื่อพิจารณาเป็นผลงานวิจัยดีเด่นประจำปี 2547 และผลงานวิจัยโครงการวิจัยระดับดีที่ได้รับการสนับสนุนจากกองทุนสนับสนุนงานวิจัยด้านการเกษตรประจำปี 2547. กรมวิชาการเกษตร. กระทรวงเกษตรและสหกรณ์.
Akano, A.O., A.G.O. Dixon, C. Mba, E. Barrera and M. Fregene. 2002. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease. Theor. Appl. Genetics. 105: 521-525.
Blair, M.W., M.A. Fregene, S.E. Beebe and H. Ceballos. 2007. Marker assisted selection in common beans and cassava. pp. 81–115. In: Marker-assisted selection (MAS) in crops, livestock, forestry and fish: current status and the way forward. Food and Agriculture Organization of the United Nations (FAO), Rome.
Brigneti, G., J. Garcia-Mas and D.C. Baulcombe. 1997. Molecular mapping of the potato virus Y resistance gene Ry sto in potato. Theor. Appl. Genet. 94: 198–203.
Carmo, C.D., M.S. Silva, G.A.F. Oliveira and E.J. Oliveira. 2015. Molecular-assisted selection for resistance to cassava mosaic disease in ManihotesculentaCrantz. Sci. Agric. 72(6): 520-527.
Ceballos, H., R.S. Kawuki, V.E. Gracen, G.C. Yencho and C.H. Hershey. 2015. Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor. Appl. Genet. 28(9):1647–1667.
Chang, H.X., A.E. Lipka, L.L. Domier and G.L. Hartman. 2016. Characterization of disease resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Phytopathology. 106(10): 1139-1151.
Chowdhury, A.K., P. Srinives, P. Saksoong and P. Tongpamnak. 2002. RAPD markers linked to resistance to downy mildew disease in soybean. Euphytica. 128: 55-60.
Ferguson, M., I. Rabbi, D.J. Kim, et al. 2012.Molecular markers and their application to cassava breeding: past, present and future. Tropical Plant Biol. 5: 95-109.
Finkers-Tomczak, A., E. Bakker, J. de Boer, et al. 2011. Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.). Theor.Appl.Genet. 122(3): 595–608.
Flis, B., J. Hennig, D. Strzelczyk-Žyta, C. Gebhardt and W. Marczewski. 2005. The Ry-fsto gene from Solanumstoloniferum for extreme resistant to Potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Mol. Breed. 15: 95-101.
Fregene, M. and J. Puonti-Kaerlas. 2002. Cassava biotechnology.pp. 179–207. In: Cassava: Biology, Production and Utilization. CABI Publishing, Wallingford.
Fregene, M., N. Morante, T. Sánchez, et al. 2006. Molecular markers for introgression of useful traits from wild Manihot relatives of cassava, marker-assisted selection (MAS) of disease and root quality traits. J. Root Crops. 32: 1-31.
Hartwig, E. E. and S.G. Lehman. 1951. Inheritance of resistance to the bacterial pustule disease in soybeans. Agron. J. 43:226-229.
Hu, K., J. Cao, J. Zhang, et al. 2017. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants. 3: 17009–17018.
Kasai, K., Y. Morikawa, V. Sorri, J. Valkonen, C. Gebhardt and K. Watanabe. 2000. Development of SCAR markers to the PVY resistance gene Ryadg based on a common feature of plant disease resistance genes. Genome. 43: 1-8.
Kim, K., J. Park, M. Kim, S. Heu and S. Lee. 2011. Genetic mapping of novel symptom in response to soybean bacterial leaf pustule in PI 96188. J. Crop Sci. Biotechnol. 14:119-123.
Krattinger, S.G. and B. Keller. 2016. Trapping the intruder-immune receptor domain fusions provide new molecular leads for improving disease resistance in plants. Genome Biol. 19, 23.
Lemos, N. G., A.L. Braccini, R.V. Abdelnoor, M.C.N. Oliveira, K. Suenaga and N. Yamanaka. 2011. Characterization of genes Rpp2, Rpp4 and Rpp5 for resistance to soybean rust. Euphytica. 182(53): 53-64.
Mba, R.E.C., P. Stephenson, K. Edwards,et al. 2001. Simple Sequence Repeat (SSR) markers survey of the cassava (Manihot esculenta Crantz) genome: towards an SSR-based molecular genetic map of cassava. Theor. Appl. Genet. 102: 21-31.
Muktar, M.S., J. Lübeck, J. Strahwald and C. Gebhardt. 2015. Selection and validation of potato candidate genes for maturity corrected resistance to Phytophthora infestans based on differential expression combined with SNP association and linkage mapping. Front Genet. 6:294.
Narvel, J. M., L.R. Jakkula, D.V. Phillips, T. Wang, S.H. Lee and H.R. Boerma. 2001. Molecular mapping of Rxp conditioning reaction to bacterial pustule in soybean. J. Hered. 92:267-270.
Okogbenin, E., C.N. Egesi, B. Olasanmi, et al. 2012. Molecular marker analysis and validation of resistance to cassava mosaic disease in elite cassava genotypes in Nigeria. Crop Sci. 52(6): 2576–2586.
Okogbenin, E., M.C.M. Porto, C. Egesi, et al. 2007. Marker aided introgression of CMD resistance in Latin American germplasm for genetic improvement of cassava in Africa. Crop. Sci. 47: 1895-1904.
Pilet-Nayel, M.L., B. Moury, V. Caffier, J. Montarry, M.C. Kerlan, S. Fournet, C.E. Durel and R. Delourme. 2017. Quantitative resistance to plant pathogens in pyramiding strategies for durable crop protection. Front Plant Sci. 8:1838.
Ribaut, J.M. and D.A. Hoisington. 1998. Marker-assisted selection: new tools and strategies. Trends. Plant. Sci.3(6): 236–239.
Ribeiro, P.F., R. Akromah and J. Manu-Aduening. 2012. Using marker assisted selection to hasten screening of cassava cultivars developed through introgression of Cassava Mosaic Disease (CMD) resistance into cassava landraces in Ghana. J. Agr. Sci. Tech. B 2: 74-80.
Rosyara, U.R. 2006. Mini-Review: Requirement of robust molecular marker technology for plant breeding applications. J. Plant Breed. Gr. 1: 67-72.
Šliwka, J., H. Jakuczun, R. Lebecka, W. Marczewski, C. Gebhardt and E. Zimnoch-Guzowska. 2006. A novel late blight resistance gene Rpi-phu1 mapped to potato chromosome IX is not related to long vegetation period. Theor. Appl. Genet. 113: 685-695.
Šliwka, J., Šwiñątek, M., Tomczyñska, I., Stefañczyk, E., Chmielarz, M., and Zimnoch-Guzowska, E. 2013. Influence of genetic background and plant age on expression of the potato late blight resistance gene Rpi-phu1 during incompatible interaction with Phytophthorainfestans. Plant Pathol. 62:1072-1080.
Stall, R.E., J.B. Jones and G.V. Minsavage. 2009. Durability of resistance in tomato and pepper to Xanthomonas causing bacterial spot. Annu. Rev.Phytopathol. 47:265–284.
Van, K., B. K.Ha, M. Y.Kim, J. K.Moon, N. C.Paek, S.Heuand S. H. Lee. 2004. SSR mapping of genes conditioning soybean resistance to six isolates of Xanthomonas axonopodis pv. glycines. Korean J. Genet. 26:47-54.
Viganó, J., A.D. Braccini, I. Schuster and V.M. Menezes. 2018. Microsatellite molecular marker-assisted gene pyramiding for resistance to Asian soybean rust (ASR). Acta Sci. Agron. 40: e39619.
Wanderley-Nogueira, A. C., L.C. Belarmino, N. Soares-Cavalcanti, J.P. Bezerra-Neto, et al. 2012. An overall evaluation of the Resistance (R) and Pathogenesis-Related (PR) superfamilies in soybean, as compared with Medicago and Arabidopsis. Genet. Mol. Biol. 35(1): 260–271.
Whitworth, J.L., R.G. Novy, D.G. Hall, J.M. Crosslin and C.R. Brown. 2009. Characterization of broad spectrum potato virus Y resistance in a Solanum tuberosum ssp. andigena-derived population and select breeding clones using markers, grafting, and field inoculations. Am. J. Pot. Res. 86: 286–296.
www.knowledgebank.irri.org (accessed on March 7, 2020)
Xu, Y. and J.H. Crouch. 2008. Marker-Assisted Selection in Plant Breeding: From Publications to Practice. Crop Sci. 48: 391-407.
Yamanaka, N., D.C.G. Silva, A.L.L. Passianotto, et al. 2008. Identification of DNA markers and characterization of the genes for resistance against Asian soybean rust. In: JIRCAS working rep no. 58: facing the challenge of soybean rust in South America, Tsukuba, Japan, pp. 99-107.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Thai Agricultural Research Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Thai Agricultural Research Journal