Evaluation of Pulp Thickness in Polished Coconut by Color Spectrophotometer

Authors

  • Anupun Terdwongworakul Terdwongworakul Department of Agricultural Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen
  • Jiramet Meetim Department of Agricultural Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen
  • Arthit Phuangsombut Department of Agricultural Engineering, Faculty of Engineering at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen

DOI:

https://doi.org/10.14456/thaidoa-agres.2023.4

Keywords:

Polished coconut, Pulp thickness, Spectrophotometer

Abstract

This research aimed to apply optical properties of polished coconut shell to predict pulp thickness or maturity. Predictive equations were constructed using 210 polished coconut shell by comparing the uses of reflectance spectra and colour values (L*, a*, b*) together with glossiness. Both reflectance spectra and colour values were obtained by averaging three measured positions at the bottom of coconut shell samples. Predictive equation generated from colour values provided slightly higher accuracy than the one developed from the reflectance spectra, in which, b* was considered the most crucial variable to pulp thickness prediction. When the predicted pulp thickness data obtained from L*, a*, b*, and gloss colour values were used to separate the coconut into 3 grades, it was found that sorting accuracy reached 80.8%, which was higher than the accuracy operated by skilled labours (74%). Results of this research showed the possibility of using colour values to predict pulp thickness or maturity of polished coconuts, which could be further applied as a sorting tool in postharvest supply chain.

References

พีรพงษ์ แสงวนางค์กูล รณฤทธิ์ ฤทธิรณ ธีรนุต ร่มโพธิ์ภักดิ์ สมนึก ทองบ่อ และ ยุพิน อ่อนศิริ. 2554. การตรวจสอบ คุณภาพและความบริบูรณ์ของผลมะพร้าวอ่อนแบบไม่ทำลายด้วยเทคนิค NIRs เพื่ออุตสาหกรรมการส่งออก. รายงานผลการวิจัย. ศูนย์นวัตกรรมเทคโนโลยีหลังการเก็บเกี่ยว สำนักงานคณะกรรมการอุดมศึกษา.

สถาบันวิจัยพืชสวน. 2562. การจัดการความรู้เทคโนโลยีการผลิตมะพร้าวน้ำหอม. สำนักพิมพ์การันตี, กรุงเทพฯ. 98 หน้า.

สำนักงานเศรษฐกิจการเกษตร. 2565. สถิติการส่งออกมะพร้าวอ่อน กระทรวงเกษตรและสหกรณ์. แหล่งข้อมูล: http://impexp.oae.go.th/service/export.php?S_YEAR=2564&E_YEAR=2565&PRODUCT_GROUP=5252&PRODUCT_ID=5031&wf_search=&WF_SEARCH=Y สืบค้น: 12 มิถุนายน 2565.

Anonymous, 2022. Rhopoint Instruments. Gloss FAQs. Available at: https://www.rhopointinstruments.com/faqs/gloss/. Accessed: June 2022.

Caladcad, J.A., S. Cabahug, M.R. Catamco, P.E. Villaceran, L. Cosgafa, K.N. Cabizares and M. Hermosilla. 2020. Determining Philippine coconut maturity level using machine learning algorithms based on acoustic signal. Computers and Electronics in Agriculture. 172: 105327.

Dobrzanski, B. and R. Rybczynski. 2002. Colour change of apple as a result of storage, shelf-life, and bruising. International Agrophysics. 16(4):.261-268.

Hendrawan, Y., A. Amini, D.M. Maharani and S.M. Sutan. 2019. Intelligent Non-Invasive Sensing Method in Identifying Coconut (Coco nucifera var. Ebunea) Ripeness Using Computer Vision and Artificial Neural Network. PERTANIKA J. Science & Technology. 27(3): 1317-1339.

Javel, I. M., A.A. Bandala, R.C. Salvador, R.A.R. Bedruz, E.P. Dadios, and R.R.P. Vicerra. 2019. Coconut fruit maturity classification using fuzzy logic. pp. 1-6. In IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)).

Jha, S.N., S. Chopra and A.R.P. Kingsly. 2005. Determination of sweetness of intact mango using visual spectral analysis. Biosystems Engineering. 91 (2): 157–161.

McGuire, R.G.. 1992. Reporting of objective color measurements. HortScience. 27(12): 1254-1255.

Wanitchang, J., A. Terdwongworakul, P. Wanitchang and S. Noypitak. 2010. Maturity sorting index of dragon fruit: Hylocereus polyrhizus. J. Food Engineering. 100(3): 409-416.

Wanitchang, P., A. Terdwongworakul, J. Wanitchang, and N. Nakawajana. 2011. Non-destructive maturity classification of mango based on physical, mechanical and optical properties. J. Food Engineering. 105(3): 477-484.

Published

2023-05-25

How to Cite

Terdwongworakul, A. T., Meetim, J., & Phuangsombut, A. . (2023). Evaluation of Pulp Thickness in Polished Coconut by Color Spectrophotometer . Thai Agricultural Research Journal, 41(1), 39–49. https://doi.org/10.14456/thaidoa-agres.2023.4

Issue

Section

Technical or research paper