Effects of Soil and Fertilizer Management on Soil Carbon Sequestration and Carbon Dioxide Emissions in the Maize Field

Authors

  • Wanida Nobuntou Agricultural Production Sciences Research and Development Office, Department of Agriculture
  • Waewta Polkul Agricultural Production Sciences Research and Development Office, Department of Agriculture
  • Nongluck Punlai Lopburi Seed Research and Development Center
  • Naruo Matsumoto Japan Internation Research Center for Agricultural Science

DOI:

https://doi.org/10.14456/thaidoa-agres.2023.18

Keywords:

Soil organic carbon, rice straw mulch, no-tillage, carbon balance, carbon dioxide

Abstract

Increasing soil organic carbon in agricultural fields through carbon sequestration is one of the strategies for mitigating climate change and improving soil fertility. Field experimental studies were carried out in a long-term field in Lopburi Seed Research and Development Center from 2017 to 2020 to clarify the effects of soil and fertilizer management on soil organic carbon change (SOC) and CO2 emissions in maize cultivation. Eight treatments with the combination of rice straw mulch (RS), no organic matter application (NoOM), tillage (Till), no-tillage (No-till), chemical fertilizer application (Chem) and no chemical fertilizer application (No-chem) were conducted in RCB with 3 replications. Results showed that CO2 emissions from soil surface in RS, Till, and Chem did not differ with an average of 3.3 t CO2/rai /year. RS increased SOC stock by 3.0 t C/rai which was greater than NoOM (2.5 t C/rai), but the rate of organic carbon accumulation in soil was lower. Whereas SOC stock change in Till did not differ from No-till. Similarly, SOC accumulation in Chem was not different from that of No-chem. C balance analysis showed RS, Till, and Chem decreased SOC stock by 39-65 kg C/rai /year, despite C input to the soil by returning maize-mung bean residues was high (649-719 kg C/rai /year). This might be caused by no increase in conversion rate of total organic C input to SOC stock change, resulting in decreased SOC storage. The results of this study could clarify SOC stock changes in upland fields under tropical conditons. However, further studies of C dynamics in different site conditions and soil properties should be undertaken.

References

กลุ่มงานวิจัยเคมีดิน. 2544. คู่มือการวิเคราะห์ดินและพืช. เอกสารวิชาการ กลุ่มงานวิจัยเคมีดิน กองปฐพีวิทยา กรมวิชาการเกษตร. โรงพิมพ์ชุมนุมสหกรณ์การเกษตรแห่งประเทศไทย จำกัด. กรุงเทพฯ. 164 หน้า.

ยงยุทธ โอสถสภา. 2557. คุณภาพดินและสุขภาพดิน. หน้า 74-96. ใน: คุณภาพดินเพื่อการเกษตร. สมาคมดินและปุ๋ยแห่งประเทศไทย. 248 หน้า.

สถาพร ใจอารีย์ กิตติมา ศิวอาทิตย์กุล และ ชินพัฒน์ธนา สุขวิบูลย์. 2556. พลวัตรของคาร์บอนในดินภายใต้การ ไถกลบตอซังข้าวโพดของประเทศไทย. ว. อนุรักษ์ดินและน้ำ. 28(3): 20-31.

ศุภกาญจน์ ล้วนมณี วนิดา โนบรรเทา ดาวรุ่ง คงเทียน สุทัศนีย์ วงศ์ศุปไทย ศรีสุดา ทิพยรักษ์ ชยันต์ ภักดีไทย วัลลีย์ อมรพล พรพรรณ สุทธิแย้ม กอบเกียรติ ไพศาลเจริญ สมควร คล้องช้าง และคณะ. 2560. การสร้างธนาคารคาร์บอนในพื้นที่ปลูกพืชไร่และพืชทดแทนพลังงาน. รายงานโครงการวิจัยสิ้นสุดประจำปีงบประมาณ พ.ศ. 2560 กรมวิชาการเกษตร. 122 หน้า.

Amos, B. and D.T. Walters. 2006. Maize root biomass and net rhizodeposited carbon: An analysis of the literature. Soil Sci. Soc. Amer. 70(5): 1489-1503.

Anderson, J.P.E., A.L. Page, R.H. Miller and D.R. Keeney. 1982. Soil Respiration. pp 831-871. In: Page, A.L., Ed., Methods of Soil Analysis, Part 2 (2nd). ASA and SSSA, Madison.

Atkinson, C.J., J.D. Fitzgerald and N.A. Hipps. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil. 337:1–18.

Biederman, L.A. and W.S. Harpole. 2013. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioen. 5: 202-214.

Fujisaki, K., T. Chevallier, L. Chapuis-Lardy, A. Alain, T. Razafimbelo, D. Masse, Y. Ndour and J.L. Chotte. 2018. Soil carbon stock changes in Tropical croplands are mainly driven by carbon inputs: A synthesis. Agri. Eco. Envi. 259: 147-158.

Ghimire, R., S. Lamichhane, B.S. Acharya, P. Bista and U.M. Sainju. 2017. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping system: A review. Integ. Agri. 16 (1):1-15.

Hazra, K.K., C.P. Nath, U. Singh, C.S. Praharaj, N. Kumar, S.S. Singh and N.P. Singh. 2019. Diversification of maize-wheat cropping system with legumes and integrated nutrient management increase soil aggregation and carbon sequestration. Geod. 353: 308-319.

Japan Soil Association. 2000. Methods of organic matter analysis-organic carbon. pp. 140-147. In: Methods of Organic Matter in Compost and Manure Analysis. Tokyo: Japan Soil Association (in Japanese).

Jarecki, M.K. and R. Lal. 2003. Crop management for soil carbon sequestration. Crit. Rev. Plant Sci. 22(6): 471-502.

Lal, R. 2003. Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit. Rev. Plant Sci. 22(2): 151-184.

Leghari, N., A.Q. Mughal, K.Q. Leghari, W. Farhad, M.S. Mirjat and H.M. Hammad. 2016. Effect of various tillage practices on soil properties and maize growth. Pak. J. Bot. 48(3): 1173-1182.

Limin, A., M. Shimizu, M. Mano, K. On, A. Miyata, H. Wada, H. Nozaki and R. Hatano. 2015. Manure application has an effect on the carbon budget of a managed grassland in southern Hokkaido, Japan. Soil Sci. Plant Nutr. 61(5): 856–872.

Ma, S., F. He, D. Tian, D. Zou, Z. Yan, Y. Yang, T. Zhou, K. Hung, H. Shen and J. Fang. 2018. Variations and determinants of carbon content in plants: a global synthesis. Biogeo.15: 693-702.

Mahmood, F., I. Khan, U. Ashraf, T. Shahzad, S. Hussain, M. Shahid, M. Abid and S. Ullah. 2017. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. Soil Sci. Plant Nutr. 17(1): 22-32.

Matsumoto, N., K. Paisancharoen and T. Hakamata. 2008. Carbon balance in maize fields under cattle manure application and no-tillage cultivation in Northeast Thailand. Soil Sci. Plant Nutr. 54(2): 77-288.

Matsumoto, N., W. Nobuntou, N. Punlai, T. Sugino, P. Rujikun, S. Luanmanee and K. Kawamura. 2021. Soil carbon sequestration on a maize-mung bean field with rice straw mulch, no-tillage, and chemical fertilizer application in Thailand from 2011 to 2015. Soil Sci. Plant Nutr. 67(2): 190-196.

Nelson, D.W. and L.E. Sommers. 1982.Total Carbon, Organic Carbon, and Organic Matter. pp. 595-579. In: Method of soil analysis, part 2. Chemical and Microbiology Properties. (2 nds) ASA-SSSA, Madison, Wisconsin, USA.

Nottingham, A.T., B.L. Turner, A.W. Stott and E.V. Tanner. 2015. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biol. Biochem. 80: 26-33.

Parihar, C.M., M.D. Parihar, T.B. Sapkota, R.K. Nanwal, A.K. Singh, S.L. Jat, H.S. Nayak, D.M. Mahala, L.K. Singh, S.K. Kakraliya, et al. 2018. Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions, and nitrous oxide fluxes in Inceptisol of India. Sci. Total. Environ. 640-641: 1382-1392.

Rayment, G.E. and F.R. Higginson. 1992. Australian Laboratory Handbook of Soil and Water Chemical Methods. Inkarta Press, Melbourne, Australia. 330 p.

Shirato, Y., K. Paisancharoen, P. Sangtong, C. Nakviro, M. Yokozawa and N. Matsumoto. 2005. Testing the Rothamsted Carbon Model against data from long-term experiments on upland soils in Thailand. Eur, J. Soil Sci. 56(2): 179-188.

Sugino, T., W. Nobuntou, N. Srisombut, P. Rugikun, S. Luanmanee and N. Punlai. 2013. Effects of long-term organic material applications and green manure crop cultivation on soil organic carbon in rain fed areas of Thailand. Int. Soil Water Conserv. Res. 1(3): 29-36.

Thelen, K.D., B.E. Fronning, A. Kravchenko, D.H. Min and G.P. Robertson. 2010. Integrating livestock manure with a corn-soybean bioenergy cropping systems improves short-term carbon sequestration rates and net global warming potential. Biom. Bioen. 34: 960-966.

Published

2023-10-04

How to Cite

Nobuntou, W., Polkul, W., Punlai, N., & Matsumoto, N. (2023). Effects of Soil and Fertilizer Management on Soil Carbon Sequestration and Carbon Dioxide Emissions in the Maize Field. Thai Agricultural Research Journal, 41(2), 203–215. https://doi.org/10.14456/thaidoa-agres.2023.18

Issue

Section

Technical or research paper