Genome Wide Association Study (GWAS) for Southern Corn Rust (SCR) Disease Resistance in Maize

Authors

  • Nay Nay Oo Doctor of Philosophy Program in Agricultural Sciences, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen campus, Nakhon Pathom 73140, Thailand.
  • Vinitchan Ruanjaichon National Center for Genetic Engineering and Biotechnology (BIOTEC), 632113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
  • Kularb Laosatit Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand.
  • Theerayut Toojinda National Center for Genetic Engineering and Biotechnology (BIOTEC), 632113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
  • Jintana Unartngam Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kam-phaeng Saen campus, Nakhon Pathom 73140, Thailand.

DOI:

https://doi.org/10.14456/thaidoa-agres.2024.7

Keywords:

Genome-wide association study (GWAS), Puccinia polysora, Southern corn rust (SCR), single nucleotide polymorphosim (SNP) genotyping array

Abstract

Southern corn rust (SCR), caused by Puccinia polysora Undrew, is one of the most important maize diseases threatening maize production. Growing resistant varieties is the most practical and cost-effective approach to controlling the disease. Identification of resistance genes would help in the development of high-yielding resistant maize hybrids. Genome-wide association studies (GWAS) can efficiently reveal genomic loci associated with the desired phenotypic traits. In this study, the phenotypes of 262 maize recombinant inbreds against two isolates of SCR disease, namely, Nakhon Pathom and Chiang Mai, were investigated. Using 434,871 single nucleotide polymorphism (SNP) markers obtained from the maize SNP 600K genotyping array, GWAS was performed with the Fixed and random model Circulating Probability Unification (FarmCPU) model. The results showed that 19 SNPs distributed on chromosomes 1, 2, 3, 4, 5, 9 and 10 were significantly associated with resistance to SCR disease. As a result, 19 quantitative trait loci (QTL)s and 36 candidate genes were identified. In addition, the three major QTLs/SNP loci which included AX-90915192 on chromosome 4, AX-91151225 on chromosome 9 and AX-91648757 on chromosome 5, could distinguish the disease-resistant from disease-susceptible lines. These identified SNPs and genes provide useful information for cloning genes and understanding disease resistance mechanisms to SCR, and can be used in marker-assisted breeding programs to develop SCR resistant maize.

References

Ashkani, S., M.Y. Rafii, M. Shabanimofrad, G. Miah, M. Sahebi, P. Azizi, F.A. Tanweer, M. S. Akhtar and A. Nasehi. 2015. Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Frontiers in Plant Science. 6: 886.

Bradbury, P.J., Z. Zhang, D.E. Kroon, T.M. Casstevens, Y. Ramdoss and E.S. Buckler. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23(19): 2633-2635.

Brewbaker, J.L., S.K. Kim, Y.S. So, M. Logroño, H.G. Moon, R. Ming, X.W. Lu and A.D. Josue. 2011. General resistance in maize to southern rust (Puccinia polysora Underw.). Crop Science. 51(4): 1393-1409.

Brito, D.P., D. Jeffers, D.G. de León, M. Khairallah, M.C. Cruz, G.V. Cardelas, S.A. Rivero and G. Srinivasan. 2001. Cartografía de QTL de la resistencia a la pudrición de la mazorca (Fusarium moniliforme) en maíz de Valles Altos, México. Agrociencia. 35(2): 181-196.

Brunelli, K.R., H.P. Silva and L.E.A. Camargo. 2002. Mapeamento de genes de resistência quantitativa a Puccinia polysora em milho. Fitopatologia Brasileira. 27: 134-140.

Cammack, R.H 1958. Studies on Puccinia polysora underw: I. The world distribution of forms of P. polysora. Transactions of the British Mycological Society. 41(1): 89-94.

Cerveny, L., A. Straskova, V. Dankova, A. Hartlova, M. Ceckova, F. Staud, J.J.I. Stulik. 2013. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infection and Immunity. 81(3): 629-635.

de Souza Camacho, L.R., M.M.D. Coan, C.A. Scapim, R.J. Barth Pinto, D.J. Tessmann and R.I. Contreras‐Soto. 2019. A genome‐wide association study for partial resistance to southern corn rust in tropical maize. Plant Breeding. 138(6): 770-780.

Elshire, R.J., J.C. Glaubitz, Q. Sun, J.A. Poland, K. Kawamoto, E.S. Buckler and S.E. Mitchell. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 6(5): e19379.

Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology. 14(8): 2611-2620.

Hallauer, A.R. and J. Miranda. 1981. Quantitative genetics in maize breeding. Ames, IA: Iowa State University Press.

Holland, J., D. Uhr, D. Jeffers and M. Goodman. 1998. Inheritance of resistance to southern corn rust in tropical-by-corn-belt maize populations. Theoretical and Applied Genetics. 96(2): 232-241.

Jiang, C., G. Edmeades, I. Armstead, H. Lafitte, M. Hayward and D. Hoisington. 1999. Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theoretical and Applied Genetics. 99(7): 1106-1119.

Jines, M., P. Balint-Kurti, L. Robertson-Hoyt, T. Molnar, J. Holland and M. Goodman. 2007. Mapping resistance to Southern rust in a tropical by temperate maize recombinant inbred topcross population. Theoretical and Applied Genetics. 114(4): 659-667.

Knapp, S.J. 1998. Marker‐assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Science. 38(5): 1164-1174.

Lipka, A.E., F. Tian, Q. Wang, J. Peiffer, M. Li, P.J. Bradbury, M.A. Gore, E.S. Buckler and Z. Zhang. 2012. GAPIT: genome association and prediction integrated tool. Bioinformatics. 28(18): 2397-2399.

Lv, M., C. Deng, X. Li, X. Zhao, H. Li, Z. Li, Z. Tian, A. Leonard, J. Jaqueth and B. Li. 2021. Identification and fine‐mapping of RppCML496, a major QTL for resistance to Puccinia polysora in maize. The Plant Genome. 14(1): e20062.

Ma, X., F. Feng, Y. Zhang, I.E. Elesawi, K. Xu, T. Li, H. Mei, H. Liu, N. Gao and C. Chen. 2019. A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population. PLoS Genetics. 15(5): e1008191.

Mindrebo, J.T., C.M. Nartey, Y. Seto, M.D. Burkart and J.P. Noel. 2016. Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Current Opinion in Structural Biology. 41: 233-246.

Niu, S., Q. Song, H. Koiwa, D. Qiao, D. Zhao, Z. Chen, X. Liu and X. Wen. 2019. Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou plateau, using genome-wide SNPs developed by genotyping-by-sequencing. BMC Plant Biology. 19(1): 1-12.

Olukolu, B.A., W.F. Tracy, R. Wisser, B. De Vries and P.J. Balint-Kurti. 2016. A genome-wide association study for partial resistance to maize common rust. Phytopathology. 106(7): 745-751.

Portwood, J.L., M.R. Woodhouse, E.K. Cannon, J.M. Gardiner, L.C. Harper, M.L. Schaeffer, J.R. Walsh, T.Z. Sen, K.T. Cho and D.A. Schott. 2019. MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Research. 47(D1): D1146-D1154.

R Core Team. 2018. R: A language and environment for statistical computing. In: R foundation for statistical computing Vienna, Austria.

Raid, R., S. Pennypacker and R. Stevenson. 1988. Characterization of Puccinia polysora epidemics in Pennsylvania and Maryland. Phytopathology. 78(5): 579-585.

Rossi, E.S., M.C. Kuki, R.J. Pinto, C.A. Scapim, M.V. Faria and N. De Leon. 2020. Genomic-wide association study for white spot resistance in a tropical maize germplasm. Euphytica. 216(1): 1-15.

Unartngam, J. 2019. Inoculation techniques of plant pathogens to evaluate plant resistance. The Thai Pytopathological Society: 104-114. (in Thai)

Unartngam, J., P. Janruang and C. To-anan. 2011. Genetic diversity of Puccinia polysora in Thailand based on inter simple sequence repeat (ISSR) markers analysis. Journal of Agricultural Technology. 7(4): 1125-1137.

Wanlayaporn, K., J. Authrapun, A. Vanavichit and S. Tragoonrung. 2013. QTL mapping for partial resistance to southern corn rust using RILs of tropical sweet corn. American Journal of Plant Sciences. 4: 878-889.

Xin, Z. and J. Chen. 2012. A high throughput DNA extraction method with high yield and quality. Plant Methods. 8: 1-7.

Young, N. 1996. QTL mapping and quantitative disease resistance in plants. Annual Review of Phytopathology. 34(1): 479-501.

Zhou, G., D. Hao, Y. Mao, Q. Zhu, G. Chen, H. Lu, M. Shi, X. Huang, Z. Zhang and J. Zhao. 2018. Identification of genetic loci conferring partial resistance to southern corn rust through a genome-wide association study. European Journal of Plant Pathology. 150(4): 1083-1090.

Downloads

Published

2024-04-29

How to Cite

Oo, N. N., Ruanjaichon, V., Laosatit, K., Toojinda, T., & Unartngam, J. (2024). Genome Wide Association Study (GWAS) for Southern Corn Rust (SCR) Disease Resistance in Maize. Thai Agricultural Research Journal, 42(1), 71–85. https://doi.org/10.14456/thaidoa-agres.2024.7

Issue

Section

Technical or research paper