Genetic Diversity and DNA Fingerprint of Pineapple (Ananas comosus) Using SSR Markers

Authors

  • Suphawadee Ngorian Biotechnology Research and Development Office, Department of Agriculture, Thanyaburi, Pathum Thani 12110, Thailand
  • Jeeraporn Kansup Biotechnology Research and Development Office, Department of Agriculture, Thanyaburi, Pathum Thani 12110, Thailand
  • Vipavee Chanroj Biotechnology Research and Development Office, Department of Agriculture, Thanyaburi, Pathum Thani 12110, Thailand
  • Mallika Nuankaew Phetchaburi Agricultural Research and Development Center, Department of Agriculture, Cha-am, Phetchaburi 76120, Thailand

DOI:

https://doi.org/10.14456/thaidoa-agres.2024.10

Keywords:

Ananas comosus, Genetic diversity, SSR marker, DNA fingerprint

Abstract

The research and development of pineapple varieties in order to obtain good yield and quality, resistance to disease and insects, breeders need to have sufficient information about breed varieties and their genetic diversity to make a decision on selecting appropriate parents. This research aimed to assess the genetic diversity and analyse a cluster of 57 pineapple cultivars/lines from DOA germplasm collection using 20 fluorescent-labeled SSR markers, was conducted from October 2021 to September 2023. Results showed that all 20 SSR markers were able to differentiate genetically among pineapple cultivars/lines used in this experiment, generating a polymorphic allele in total of 105 alleles varying from 3 to 9 alleles per locus, with an average of 5.3 alleles per locus. All of 105 alleles showed that the polymorphic bands accounted for 100%. The sizes of DNA fragments ranged from 94 to 400 base pairs. The Polymorphism Information Content (PIC) value ranged from 0.44 to 0.67, with an average of 0.59. Cluster analysis based on UPGMA and genetic relationships using NTSYSpc version 2.10e showed similarity coefficient value in range of 0.50 to 1.00, and revealed 5 distinct groups, consistent with pedigree and the grouping of cultivars/lines based on morphological characteristics, with a cophenetic correlation (r) of 0.85. Therefore, SSR markers used in this study were appropriate to identify the genetic differences between pineapple cultivars/lines and the uniqueness of the cultivars in this experiment. Besides, the genetic diversity database of pineapples is useful for parental selection in pineapple breeding programs.

References

กิตติพัฒน์ อุโฆษกิจ. 2564. เครื่องหมายโมเลกุลเพื่อการปรับปรุงพันธุ์พืช. สำนักพิมพ์มหาวิทยาลัยธรรมศาสตร์ ปทุมธานี. 393 หน้า.

ทวีศักดิ์ แสงอุดม. 2560. การจัดการการผลิตสับปะรดคุณภาพ. สถาบันวิจัยพืชสวน กรมวิชาการเกษตร, กรุงเทพฯ. 184 หน้า.

มนตรี กล้าขาย. 2560. MD-2: สับปะรดผลสดพันธุ์ใหม่ที่ครองใจคนทั้งโลก. แหล่งข้อมูล : https://www.technologychaoban.com/agricultural-technology/article_33935. สืบค้น: 23 พฤษภาคม 2567.

มนตรี กล้าขาย. 2563. MG-3: สับปะรดพันธุ์ใหม่ รสหวานได้ใจ ผลใหญ่จากฟิลิปปินส์. แหล่งข้อมูล : https://www.technologychaoban.com/agricultural-technology/article_136154. สืบค้น: 19 มีนาคม 2567.

สาวบางแค 22. 2565. ชื่อสับปะรดปัตตาเวียเหมือนกัน แต่รสชาติความอร่อยต่างกัน. แหล่งข้อมูล : https://www.technologychaoban.com/agricultural-technology/article_205445. สืบค้น: 23 พฤษภาคม 2567.

สำนักงานเศรษฐกิจการเกษตร. 2565. ภาพรวมสถานการณ์สินค้าเกษตรปี 2565 และแนวโน้มปี 2565. แหล่งข้อมูล: http://www.oae.go.th. สืบค้น: 2 ธันวาคม 2566.

Abdalah, M., M.S. Seth, A. Ndee, E.E. Mneney, G. Mbwambo, K. Lema, A. Godfrey, L. Mrema, A. Kachiwile, E. Mrema and T.J. Msogoya. 2018. Diversity and genetic identity of pineapple [Ananas comosus (L.) Merr.] in Tanzania based on microsatellite markers. African Journal of Biotechnology. 17(26): 811 – 817.

Botstein, D., R.L. White, M. Skolnick and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics. 32(3): 314 – 331.

Costa, T.R.D., P.S.V. Filho, M.C. Gonçalves-Vidigal, M.Z. Galván, G.F. Lacanallo, L.I. da Silva and M.V. Kvitschal. 2013. Genetic diversity and population structure of sweet cassava using simple sequence repeat (SSR) molecular markers. African Journal of Biotechnology. 12(10): 1040 – 1048.

Dellaporta, S.L., J. Wood and J.B. Hicks. 1983. A plant DNA minipreparation: Version II, Plant Molecular Biology Reporter. 1(4): 19 – 21.

Hokanson, S.C., A.K. Szewc-McFadden, W.F. Lamboy and J.R. McFerson. 1998. Microsatellite (SRR) markers reveal genetic identities, genetic diversity and relationships in a Malus x domestica borkh. core subset collection. Theoretical and Applied Genetics. 97(5): 671 – 683.

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 89(3): 583 – 590.

Py, C., J.J. Lacoeuilhe and C. Teisson. 1987. The Pineapple Cultivation and Uses. G.P. Maisonneuve et Larose Publisher, Paris. 568 p.

Rohlf, F.J. 2000. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System Version 2.1. Exeter Publishing Setauket, New York.

Sirithunya, P., E. Roumen, S. Mongkolsomrit, S. Sriprakhon, P. Hutamekalin and T. Sreewongchai. 2001. Instruction Manual Workshop on Molecular Genetic Analysis on Diversity of Blast Pathogen in Thailand. Yothee laboratory Unit Bangkok, Thailand.

Yanfeng, D., J. Liu, J. Xu, C. Bian, S. Duan, W. Pang, J. Hu, G. Li and L. Jin. 2019. DNA fingerprinting and genetic diversity analysis with simple sequence repeat markers of 217 potato cultivars (Solanum tuberosum L.) in China. American Journal of Potato Research. 96: 21 – 32.

Yu, J.Z., D.D. Fang, R.J. Kohel, M. Ulloa, L.L. Hinze, R.G. Percy, J. Zhang, P.W. Chee, B.E. Scheffler and D.C. Jones. 2012. Development of a core set of SSR markers for the characterization of Gossypium germplasm. Euphytica. 187(2): 203 – 213.

Published

2024-08-30

How to Cite

Ngorian, S., Kansup, J., Chanroj, V., & Nuankaew, M. (2024). Genetic Diversity and DNA Fingerprint of Pineapple (Ananas comosus) Using SSR Markers . Thai Agricultural Research Journal, 42(2), 116–130. https://doi.org/10.14456/thaidoa-agres.2024.10

Issue

Section

Technical or research paper