Insight into Host-driven in Planta Evolution of Columnea Latent Viroid through Quasi-species Population
Keywords:
columnea latent viroid, quasi-species, population study, mutations, high-throughput sequencingAbstract
With a high mutation rate and fast replication, a population of mutated viroid progenies is generated and co-exists in the same host plant as a population of variants (so-called quasi-species), showing a huge level of genetic diversity. In our work, we report the evidence of the quasi-species in CLVd in several solanaceous plants; tomato (Rutgers and Seda 50), bolo maka and eggplant. An infectious dsDNA CLVd was synthesized from the recombinant plasmid containing the full-length genome of CLVd isolate Solanum-1 (JF742632) and then inoculated on the plants under specific conditions. The initial inoculation only successfully infected tomato cv. Rutgers. This CLVd-infected Rutgers was used for subsequent inoculation of the above-mentioned host plants. When all host plants proved to be systemically infected, RNA extraction and RT-PCR were performed. To study the CLVd population in individual host plants, the specific CLVd primers linked with an eight base sample-tagging sequence were used for amplifying libraries. The average 20,237 CLVd reads per PCR-replicate and 22 progeny variants in total from the first infected tomato plant were obtained. Among these 22 of CLVd variants, we found 22 total number of single-nucleotide polymorphisms in which average three point-mutations per CLVd genome mainly in Terminal Right and Pathogenic domains were observed. In addition, the estimated mutation rate of CLVd was calculated at 8.15 X10-3. Our data demonstrate that CLVd in a host plant exists as a population of quasi-species while showing host specificity of the dominant variants as host-driven in planta evolution.
References
กนกมณี ตันสุวรรณ และ คนึงนิตย์ เหรียญวรากร. (2561). การถ่ายทอดเชื้อ Columnea latent viroid ผ่านทางเมล็ดของแตงกวา. วารสารวิชาการเกษตร, 36, 130–140.
ปริเชษฐ์ ตั้งกาญจนภาสน์. (2548). การตรวจสอบเชื้อไวรอยด์ในแปลงผลิตเมล็ดพันธุ์มะเขือเทศในเขตภาคตะวันออกเฉียงเหนือของประเทศไทย. วิทยานิพนธ์ปริญญามหาบัณฑิต, มหาวิทยาลัยเกษตรศาสตร์, นครปฐม. 85 หน้า.
ปริเชษฐ์ ตั้งกาญจนภาสน์, คนึงนิตย์ เหรียญวรากร และ วิภา เกิดพิพัฒน์. (2556ก). เชื้อ Columnea latent viroid (CLVd) สายพันธุ์ใหม่ที่ก่อให้เกิดอาการรุนแรงในมะอึก (Solanum stramonifolium Jacq.). วารสารวิชาการเกษตร, 31, 53–68.
ปริเชษฐ์ ตั้งกาญจนภาสน์, คนึงนิตย์ เหรียญวรากร, เสริมศิริ จันทร์เปรม และ รัชนี ฮงประยูร. (2548). ไพรเมอร์สำหรับตรวจสอบเชื้อไวรอยด์ที่ก่อให้เกิดโรคในมะเขือเทศ 6 ชนิด ในกลุ่ม Pospiviroid ด้วยเทคนิค RT-PCR. วารสารโรคพืช, 1(2), 13-21.
ศศิประภา มาราช. (2551). โคลนก่อโรคของเชื้อ Columnea latent viroid และผลกระทบต่อมะเขือเทศพันธุ์การค้า. วิทยานิพนธ์ปริญญามหาบัณฑิต, มหาวิทยาลัยเกษตรศาสตร์, นครปฐม. 86 หน้า.
Bernad, L., Duran-Vila, N., F. Elena, S., 2009. Effect of citrus hosts on the generation, maintenance and evolutionary fate of genetic variability of citrus exocortis viroid. Journal of General Virology 90, 2040–2049. https://doi.org/10.1099/vir.0.010769-0
Bernad, L., Gandía, M., Duran-Vila, N., 2005. Host effect on the genetic variability of Citrus exocortis viroid (CEVd), in: The Sixteenth IOCV Conference. Presented at the The Sixteenth IOCV Conference, Valencia, Spain.
Brass, J.R.J., Owens, R.A., Matoušek, J., Steger, G., 2017. Viroid quasispecies revealed by deep sequencing. RNA Biology 14, 317–325. https://doi.org/10.1080/15476286.2016.1272745
Bull, J.J., Meyers, L.A., Lachmann, M., 2005. Quasispecies Made Simple. PLOS Computational Biology 1, e61. https://doi.org/10.1371/journal.pcbi.0010061
Choi, H., Jo, Y., Yoon, J.-Y., Choi, S.-K., Cho, W.K., 2017. Sequence variability of Chrysanthemum stunt viroid in different chrysanthemum cultivars. PeerJ 5, e2933. https://doi.org/10.7717/peerj.2933
Constable, F., Chambers, G., Penrose, L., Daly, A., Mackie, J., Davis, K., Rodoni, B., Gibbs, M., 2019. Viroid-infected Tomato and Capsicum Seed Shipments to Australia. Viruses 11, 98. https://doi.org/10.3390/v11020098
Ding, B., Itaya, A., 2007. Viroid: A Useful Model for Studying the Basic Principles of Infection and RNA Biology. MPMI 20, 7–20. https://doi.org/10.1094/MPMI-20-0007
Dingley, A.J., Steger, G., Esters, B., Riesner, D., Grzesiek, S., 2003. Structural Characterization of the 69 Nucleotide Potato Spindle Tuber Viroid Left-terminal Domain by NMR and Thermodynamic Analysis. Journal of Molecular Biology 334, 751–767. https://doi.org/10.1016/j.jmb.2003.10.015
Domingo, E., Sheldon, J., Perales, C., 2012. Viral Quasispecies Evolution. Microbiol Mol Biol Rev 76, 159–216. https://doi.org/10.1128/MMBR.05023-11
Eigen, M., 1971. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523. https://doi.org/10.1007/BF00623322
Flores, R., Grubb, D., Elleuch, A., Nohales, M.-Á., Delgado, S., Gago, S., 2011. Rolling-circle replication of viroids, viroid-like satellite RNAs and hepatitis delta virus: Variations on a theme. RNA Biology 8, 200–206. https://doi.org/10.4161/rna.8.2.14238
Flores, R., Serra, P., Minoia, S., Di Serio, F., Navarro, B., 2012. Viroids: From Genotype to Phenotype Just Relying on RNA Sequence and Structural Motifs. Front. Microbio. 3. https://doi.org/10.3389/fmicb.2012.00217
Gago, S., Elena, S.F., Flores, R., Sanjuán, R., 2009. Extremely High Mutation Rate of a Hammerhead Viroid. Science 323, 1308–1308. https://doi.org/10.1126/science.1169202
Gago-Zachert, S., 2016. Viroids, infectious long non-coding RNAs with autonomous replication. Virus Research, Long noncoding RNAs in viral infections 212, 12–24. https://doi.org/10.1016/j.virusres.2015.08.018
Gandía, M., Bernad, L., Rubio, L., Duran-Vila, N., 2007. Host Effect on the Molecular and Biological Properties of a Citrus exocortis viroid Isolate from Vicia faba. Phytopathology® 97, 1004–1010. https://doi.org/10.1094/PHYTO-97-8-1004
Gandía, M., Duran-Vila, N., 2004. Variability of the progeny of a sequence variant Citrus bent leaf viroid (CBLVd). Arch Virol 149, 407–416. https://doi.org/10.1007/s00705-003-0219-1
Glouzon, J.-P.S., Bolduc, F., Wang, S., Najmanovich, R.J., Perreault, J.-P., 2014. Deep-Sequencing of the Peach Latent Mosaic Viroid Reveals New Aspects of Population Heterogeneity. PLOS ONE 9, e87297. https://doi.org/10.1371/journal.pone.0087297
Góra-Sochacka, A., Kierzek, A., Candresse, T., Zagórski, W., 1997. The genetic stability of potato spindle tuber viroid (PSTVd) molecular variants. RNA 3, 68–74.
Gozmanova, M., Denti, M.A., Minkov, I.N., Tsagris, M., Tabler, M., 2003. Characterization of the RNA motif responsible for the specific interaction of potato spindle tuber viroid RNA (PSTVd) and the tomato protein Virp1. Nucleic Acids Research 31, 5534–5543. https://doi.org/10.1093/nar/gkg777
Hajeri, S., Ramadugu, C., Manjunath, K., Ng, J., Lee, R., Vidalakis, G., 2011. In vivo generated Citrus exocortis viroid progeny variants display a range of phenotypes with altered levels of replication, systemic accumulation and pathogenicity. Virology 417, 400–409. https://doi.org/10.1016/j.virol.2011.06.013
Hamdi I, 2011. Insights on genetic diversity and phylogenetic analysis of Hop stunt viroid (HSVd) population from symptomatic citrus tree in Tunisia. Afr. J. Microbiol. Res. 5. https://doi.org/10.5897/AJMR11.563
Hammond, R., Smith, D.R., Diener, T.O., 1989. Nucleotide sequence and proposed secondary structure of Columnea latent viroid: a natural mosaic of viroid sequences. Nucl Acids Res 17, 10083–10094. https://doi.org/10.1093/nar/17.23.10083
Jiang, D., Gao, R., Qin, L., Wu, Z., Xie, L., Hou, W., Li, S., 2014. Infectious cDNA clones of four viroids in Coleus blumei and molecular characterization of their progeny. Virus Research 180, 97–101. https://doi.org/10.1016/j.virusres.2013.11.014
Kalantidis, K., Denti, M.A., Tzortzakaki, S., Marinou, E., Tabler, M., Tsagris, M., 2007. Virp1 Is a Host Protein with a Major Role in Potato Spindle Tuber Viroid Infection in Nicotiana Plants. J Virol 81, 12872–12880. https://doi.org/10.1128/JVI.00974-07
Keese, P., Symons, R.H., 1985. Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proceedings of the National Academy of Sciences 82, 4582–4586. https://doi.org/10.1073/pnas.82.14.4582
Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33, 1870–1874. https://doi.org/10.1093/molbev/msw054
Lauring, A.S., Andino, R., 2010. Quasispecies Theory and the Behavior of RNA Viruses. PLOS Pathogens 6, e1001005. https://doi.org/10.1371/journal.ppat.1001005
López-Carrasco, A., Ballesteros, C., Sentandreu, V., Delgado, S., Gago-Zachert, S., Flores, R., Sanjuán, R., 2017. Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLOS Pathogens 13, e1006547. https://doi.org/10.1371/journal.ppat.1006547
Maniataki, E., Tabler, M., Tsagris, M., 2003. Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with the host protein VirP1. RNA 9, 346–354. https://doi.org/10.1261/rna.2162203
Matsushita, Y., Tsuda, S., 2016. Seed transmission of potato spindle tuber viroid, tomato chlorotic dwarf viroid, tomato apical stunt viroid, and Columnea latent viroid in horticultural plants. Eur J Plant Pathol 145, 1007–1011. https://doi.org/10.1007/s10658-016-0868-z
Navarro, B., Gisel, A., Rodio, M.-E., Delgado, S., Flores, R., Di Serio, F., 2012. Viroids: How to infect a host and cause disease without encoding proteins. Biochimie 94, 1474–1480. https://doi.org/10.1016/j.biochi.2012.02.020
Nie, X., 2012. Analysis of Sequence Polymorphism and Population Structure of Tomato chlorotic dwarf viroid and Potato spindle tuber viroid in Viroid-Infected Tomato Plants. Viruses 4, 940–953. https://doi.org/10.3390/v4060940
Owens, R.A., Chen, W., Hu, Y., Hsu, Y.-H., 1995. Suppression of Potato Spindle Tuber Viroid Replication and Symptom Expression by Mutations Which Stabilize the Pathogenicity Domain. Virology 208, 554–564. https://doi.org/10.1006/viro.1995.1186
Owens, R.A., Smith, D.R., Diener, T.O., 1978. Measurement of viroid sequence homology by hybridization with complementary DNA prepared in vitro. Virology 89, 388–394. https://doi.org/10.1016/0042-6822(78)90181-2
Palukaitis, P., 2014. What has been happening with viroids? Virus Genes 49, 175–184. https://doi.org/10.1007/s11262-014-1110-8
Podstolski, W., Góra-Sochacka, A., Zagórski, W., 2005. Co-inoculation with two non-infectious cDNA copies of potato spindle tuber viroid (PSTVd) leads to the appearance of novel fully infectious variants. Acta Biochim Pol 52, 87–98. https://doi.org/10.18388/abp.2005_3490
Sano, T., Candresse, T., Hammond, R.W., Diener, T.O., Owens, R.A., 1992. Identification of multiple structural domains regulating viroid pathogenicity. Proc. Natl. Acad. Sci. U.S.A. 89, 10104–10108. https://doi.org/10.1073/pnas.89.21.10104
Semancik, J.S., Szychowski, J.A., Rakowski, A.G., Symons, R.H., 1993. Isolates of citrus exocortis viroid recovered by host and tissue selection. Journal of General Virology 74, 2427–2436. https://doi.org/10.1099/0022-1317-74-11-2427
Steger, G., 2017. Modelling the three-dimensional structure of the right-terminal domain of pospiviroids. Sci Rep 7, 711. https://doi.org/10.1038/s41598-017-00764-x
Tangkanchanapas, P., 2020. Viroid-host interactions in Solanaceae (PhD Thesis). Ghent University, Ghent, Belgium.
Tangkanchanapas, P., Haegeman, A., Höfte, M., De Jonghe, K., 2021. Reassessment of the Columnea latent viroid (CLVd) Taxonomic Classification. Microorganisms 9, 1117. https://doi.org/10.3390/microorganisms9061117
Tangkanchanapas, P., Haegeman, A., Ruttink, T., Höfte, M., De Jonghe, K., 2020. Whole-Genome Deep Sequencing Reveals Host-Driven in-planta Evolution of Columnea Latent Viroid (CLVd) Quasi-Species Populations. IJMS 21, 3262. https://doi.org/10.3390/ijms21093262
Verhoeven, J. th. j., Jansen, C.C.C., Willemen, T.M., Kox, L.F.F., Owens, R.A., Roenhorst, J.W., 2004. Natural infections of tomato by Citrus exocortis viroid, Columnea latent viroid, Potato spindle tuber viroid and Tomato chlorotic dwarf viroid. European Journal of Plant Pathology 110, 823–831. https://doi.org/10.1007/s10658-004-2493-5
Vidalakis, G., Davis, J.Z., Semancik, J.S., 2005. Intra-population diversity between citrus viroid II variants described as agents of cachexia disease. Ann Applied Biology 146, 449–458. https://doi.org/10.1111/j.1744-7348.2005.040164.x
Visvader, J.E., Symons, R.H., 1985. Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucl Acids Res 13, 2907–2920. https://doi.org/10.1093/nar/13.8.2907
Xu, W., Hong, N., Wang, G., Fan, X., 2008. Population Structure and Genetic Diversity within Peach latent mosaic viroid Field Isolates from Peach Showing three Symptoms. Journal of Phytopathology 156, 565–572. https://doi.org/10.1111/j.1439-0434.2008.01398.x
Zhong, X., Archual, A.J., Amin, A.A., Ding, B., 2008. A Genomic Map of Viroid RNA Motifs Critical for Replication and Systemic Trafficking. The Plant Cell 20, 35–47. https://doi.org/10.1105/tpc.107.056606
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Thai Agricultural Research Journal
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Thai Agricultural Research Journal