Production of Cassava Starch-based Biofilm Using Lignin and Nanocellulose from Durian Husk as Additives

Authors

  • Kanoksak Loiloes Postharvest and Processing Research and Development Division, Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand
  • Prayoon Enmak Postharvest and Processing Research and Development Division, Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand
  • Napatsorn Leabwan Postharvest and Processing Research and Development Division, Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand
  • Sukanya Nitiyon Postharvest and Processing Research and Development Division, Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand
  • Siwat Plaisen Postharvest and Processing Research and Development Division, Phahonyothin Rd., Chatuchak, Bangkok 10900, Thailand

DOI:

https://doi.org/10.14456/thaidoa-agres.2025.26

Keywords:

biofilm, agricultural waste, lignin, nanocellulose, durian husk

Abstract

Biofilm made from cassava starch is not durable for packing usage due to its easy breaking and short lifespan. A large amount of durian shells was useless and unutilized by industry; therefore, they were chosen to produce additives for biofilm production. This research aims to enhance the durability of cassava starch-based biofilm by incorporating lignin and nanocellulose extracted from durian husk in biofilm. The result indicated that the lignin and nanocellulose extracted from durian husk had a lignin content of 39.5% and nanocellulose of 10% by dry basis. Cassava starch-based biofilms were prepared with varying concentrations of durian husk lignin and nanocellulose, along with 30% glycerol by weight. The biofilm containing 3% lignin exhibited the best physical and chemical properties, including a tensile strength of 142.51±5.21 kgf/cm², film elongation of 10.81±0.53%, moisture content of 7.97±0.18%, and water solubility of 4.88±0.65%. The oxygen permeation rate is 109.1±15.48 cm³/m²/day, similar to the biofilm without additives (109.5±34.71 cm³/m²/day), a thickness of 0.185±0.00 mm and a color change (∆E) of 41.89±0.85. Cassava starch biofilms with 3% lignin from durian husk and 30% glycerol were more durable and can be used for dry food packaging because of their better physical properties.

References

ขจรรักษ์ พู่พัฒนศิลป์. 2567. วัน Kick Off สร้างมูลค่าเปลือกทุเรียนด้วยเทคโนโลยีและนวัตกรรม. แหล่งข้อมูล: https://siamrath.co.th/n/564976. สืบค้น: 13 กันยายน 2568.

นรินทร์ เจริญพันธ์ ศักดิ์ชัย เศรษฐ์อนวัช และสามารถ สายอุต. 2563. องค์ประกอบทางเคมีและแนวโน้มการใช้ประโยชน์จากผลพลอยได้และเศษเหลือทิ้งจากการแปรรูปผลไม้เขตร้อน 4 ชนิด. วารสารวิทยาศาสตร์และเทคโนโลยี. 28(1): 113-128.

วิไล สันติโสภาศรี กาญจนา กู้โรจนวงศ์ โอภาษ บุญเส็ง และกล้าณรงค์ ศรีรอต. 2542. สภาวะแล้งน้ำในระหว่างการเจริญเติบโตที่มีต่อคุณภาพและสมบัติทางเคมีฟิสิกส์ของแป้งมันสำปะหลัง. หน้า 154-161. ใน: การประชุมทางวิชาการของมหาวิทยาลัยเกษตรศาสตร์ ครั้งที่ 37, 3-5 กุมภาพันธ์ 2542.

Aadil, K.R., A. Barapatre and H. Jha. 2016a. Synthesis and characterization of Acacia lignin-gelatin film for its possible application in food packaging. Bioresources and Bioprocessing. 3: 27.

Aadil, K.R., D. Prajapati and H. Jha. 2016b. Improvement of physcio-chemical and functional properties of alginate film by Acacia lignin. Food Packaging and Shelf Life. 10: 25–33.

Acosta, E., T. Chavez. T.C. Patricia, R. Benjamin, A.B. Luis, V. Alejandro, C.M. Ros, C.M. Elizabeth, P.J. Maribel and A.I.L. Osuna. 2015. Mechanical, thermal, and antioxidant properties of composite films prepared from durum wheat starch and lignin. Starch/Stärke. 67(5-6): 502–511.

Awal, A. and M. Sain. 2011. Spectroscopic studies and evaluation of thermorheological properties of softwood and hardwood lignin. Journal of Applied Polymer Science. 122(2): 956–963.

Bagde, P. and V. Nadanathangam. 2019. Mechanical, antibacterial and biodegradable properties of starch film containing bacteriocin immobilized crystalline nanocellulose. Carbohydrate Polymers. 222: 115021.

Bhat, R., N. Abdullah, R.H. Din and G.S. Tay. 2013. Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. Journal of Food Engineering. 119(4): 707–713.

Cardoso, M., D.D. Oliveira and M.L. Passos. 2009. Chemical composition and physical properties of black liquors and their effects on liquor recovery operation in Brazilian pulp mills. Fuel. 88(4): 756–763.

Cao, J., G. Xiao, X. Xu, D. Shen and B. Jin. 2013. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Processing Technology. 106: 41–47.

Chen, Q., Y. Liu and G. Chen. 2019. A comparative study on the starch-based biocomposite films reinforced by nanocellulose prepared from different non-wood fibers. Cellulose. 26(4): 2425–2435.

Espinosa, E., I. Bascón-Villegas, A. Rosal, F. Pérez-Rodríguez, G. Chinga-Carrasco and A. Rodríguez. 2019. PVA/(ligno) nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. International Journal of Biological Macromolecules. 141: 197–206.

Habibi, Y. 2014. Key advances in the chemical modification of nanocelluloses. Chemical Society Reviews. 43(5): 1519-1542.

Heggset, E.B., G. Chinga-Carrasco and K. Syverud. 2017. Temperature stability of nanocellulose dispersions. Carbohydrate Polymers. 157: 114–121.

Hu, j., R. Xiao, D. Shen and H. Zhang. 2013. Structural analysis of lignin residue from black liquor and its thermal performance in thermogravimetric-Fourier transform infrared spectroscopy. Bioresource Technology. 128: 633-639.

Li, C., X. Zhao, A. Wang, G.W. Huber and T. Zhang. 2015. Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews. 115(21): 11559-11624.

Liu, C., B. Li, H. Du, D. Lv, Y. Zhang, G. Yu, X. Mu and H. Peng. 2016. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydrate Polymers. 151: 716–724.

Nagar, M., V.S. Sharanagat, Y. Kumar and L. Singh. 2020. Development and characterization of elephant foot yam starch-hydrocolloids based edible packaging film: Physical, optical, thermal and barrier properties. Journal of Food Science and Technology: 57(4): 1331-1341.

Neto, W.P.F., H.A. Silvério, N.O. Dantas and D. Pasquini. 2013. Extraction and characterization of cellulose nanocrystals from agro-industrial residue–soy hulls. Industrial Crops and Products. 42: 480-488.

Pelissari, F.M., M.M. Andrade-Mahecha, P.J.A. Sobral and F.C. Menegalli. 2017. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. Journal of Colloid and Interface Science. 505: 154-167.

Rojo, E., M.S. Peresin, W.W. Sampson, I.C. Hoeger, J. Vartiainen, J. Laine and O.J. Rojas. 2015. Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films. Green Chemistry. 17(3): 1853-1866.

Rolland-Sabaté, A., T. Sánchez, A. Buléon, P. Colonna, B. Jaillais, H. Ceballos and D. Dufour. 2012. Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources. Food Hydrocolloids. 27(1): 161-174.

Shankar, S., J.P. Reddy and J.W. Rhim. 2015. Effect of lignin on water vapor barrier, mechanical, and structural properties of agar/lignin composite films. International Journal of Biological Macromolecules. 81: 267–273.

Tan, C., C.K. Chua, L. Li and G. Wong. 2018. Enhancing 3D printability of puree food by addition of hydrocolloids. pp. 662-666. In: Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018).

Tsakama, M., A.M. Mwangwela., T.A. Manani and N.M. Mahungu. 2010. Physicochemical and pasting properties of starch extracted from eleven sweet potato varieties. African Journal of Food Science and Technology. 1(4): 90-98.

Yang, W., G. Qi, J.M. Kenny, D. Puglia and P. Ma. 2020. Effect of cellulose nanocrystals and lignin nanoparticles on mechanical, antioxidant, and water vapour barrier properties of glutaraldehyde crosslinked PVA films. Polymers. 12(6): 1364.

Watkins, D., M. Nuruddin, M. Hosur, A. Tcherbi-Narteh and S. Jeelani. 2015. Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology. 4(1): 26-32.

Published

2025-12-16

How to Cite

Loiloes, K., Enmak, P., Leabwan, N., Nitiyon, S., & Plaisen, S. (2025). Production of Cassava Starch-based Biofilm Using Lignin and Nanocellulose from Durian Husk as Additives. Thai Agricultural Research Journal, 43(3), 329–340. https://doi.org/10.14456/thaidoa-agres.2025.26

Issue

Section

Technical or research paper