Inducing Substances and Plant Defense Mechanisms Related to Pest Resistance in Tobacco with Scopoletin Extracts from the Morinda citrifolia L. (Noni) Fruits
DOI:
https://doi.org/10.14456/thaidoa-agres.2025.25Keywords:
scopoletin, noni fruit, extraction, resistance, plant elicitorAbstract
Scopoletin is a secondary metabolite found in many plants. It possesses antioxidant properties and inhibits the growth of microorganisms. This research aimed to extract scopoletin from Thai noni (Morinda citrifolia L.) fruit to investigate its potential role in inducing compounds and mechanisms related to pest resistance in tobacco plants. The extraction was performed using the maceration method with ethanol as the solvent. The extract was then separated by column chromatography using silica gel as the stationary phase and a mixture of ethyl acetate and hexane (0–60% v/v) as the mobile phase. The presence of scopoletin in each fraction was detected by TLC under UV light at 365 nm. The fraction containing scopoletin was further purified using 2% methanol in dichloromethane as the mobile phase. The purified compound was identified using TLC, UV-visible spectroscopy, Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. The results confirmed that the obtained yellow crystal were scopoletin, with a yield of 0.038±0.01%. A resistance induction assay was performed by infiltrating scopoletin into tobacco leaves at concentrations of 100, 500 and 1,000 μM. The treatment stimulated the production of salicylic acid and increased the activities of phenylalanine ammonia-lyase, glucanase and peroxidase, with peak responses observed at different time points. These findings suggest that scopoletin isolated from Thai noni fruit may functions as a plant elicitor that enhances pest resistance in tobacco by activating signaling molecules and defense-related enzymes.
References
ณพัฐอร บัวฉุน. 2563. ฤทธิ์ต้านอนุมูลอิสระ และปริมาณฟีนอลลิกรวมของสารสกัดหยาบลูกยอ. วารสารวิจัยและพัฒนาวไลยอลงกรณ์ ในพระบรมราชูปถัมภ์. สาขาวิทยาศาสตร์และเทคโนโลยี. 15 (2) : 67-76.
อภิรักษ์ ศักดิ์เพ็ชร ดวงเพ็ญ ปัทมดิลก พีรธรรม เทียมเทียบรัตน์ ศักดิ์วิชัย อ่อนทอง และณุฉัตรา จันทร์สุวานิชย์. 2561. คุณภาพทางเคมีของผลยอ. วารสารการแพทย์แผนไทยและการแพทย์ทางเลือก. 16(2): 195-204.
Ali, M.B., K.W. Yu, E.J. Hahn and K.Y. Paek. 2005. Differential responses of anti-oxidants enzymes, lipoxygenase activity, ascorbate content and the production of saponins in tissue cultured root of mountain Panax ginseng C.A. Mayer and Panax quinquefolium L. in bioreactor subjected to methyl jasmonate stress. Plant Science. 169(1): 83–92.
Asadi-sardari, A., E. Mahdikhani-Moghadam and M. Zaki-Aghl. 2022. The biochemical changes in two moderately resistant and highly susceptible tomato cultivars at the later stages of Meloidogyne javanica infection. Nematology. 24(10): 1085-1103.
Ba, R., T. Alfa, F. Gbaguidi, K.M. Novidzro, K. Dotse, K. Koudouvo, U. Houngue, M.T. Donou Hounsode, K.H. Koumaglo, Y. Ameyapoh and L. Baba-Moussa. 2017. Maize fungal growth control with scopoletin of Cassava roots produced in Benin. International Journal of Microbiology. 2017(1): e5671942.
Beyer, S.F., A. Beesley, P.F.W. Rohmann, H. Schultheiss, U. Conrath and C.J.G., Langenbach. 2019. The Arabidopsis non-host defence-associated coumarin scopoletin protects soybean from Asian soybean rust. The Plant Journal. 99(3): 397–413.
Bushnell, O.A., M. Fukuda and T. Makinodian. 1950. The antibacterial properties of some plants found in Hawaii. Pacific Science. 4(3): 167-183.
Chanwun, T., N. Muhamad, N. Chirapongsatonkul and N. Churngchow, 2013. Hevea brasiliensis cell suspension peroxidase: purification, characterization and application for dye decolorization. AMB Express. 3: 14.
Deenamo, N., A. Kuyyogsuy, K. Khompatara, T. Chanwun, K. Ekchaweng and N. Churngchow. 2018. Salicylic acid induces resistance in rubber tree against Phytophthora palmivora. International Journal of Molecular Sciences. 19(7): 1883.
Ding, P. and Y. Ding. 2020. Stories of salicylic acid: A plant defense hormone. Trends in Plant Science. 25(6): 549−565.
Dorey, S., F. Baillieul, M.A. Pierrel, P. Saindrenan, B. Fritig and S. Kauffmann. 1997. Spatial and temporal induction of cell death, defense genes, and accumulation of salicylic acid in tobacco leaves reacting hypersensitively to a fungal glycoprotein elicitor. Molecular Plant-Microbe Interactions. 10(5): 646–655.
Dos Santos, C. and O.L. Franco. 2023. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. Plants. 12(11): 2226.
Du, H., Y. Sun, R. Yang, W. Zhang, C. Wan, J. Chen, İ. Kahramanoğlu and L. Zhu. 2021. Benzothiazole (BTH) induced resistance of Navel orange fruit and maintained fruit quality during storage. Journal of Food Quality. 2021(1): e6631507.
Ederli, L., L. Madeo, O. Calderini, C. Gehring, C. Moretti, R. Buonaurio, F. Paolocci and S. Pasqualini. 2011. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection. Journal of Plant Physiology. 168(15): 1784-1794.
Galán-Pérez, J.A., B. Gámiz and R. Celis. 2021. Determining the effect of soil properties on the stability of scopoletin and its toxicity to target plants. Biology and Fertility of Soils. 57(5): 643–655.
Huang, W., Y. Wang, X. Li and Y. Zhang. 2020. Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant. 13(1): 31–41.
Iriti, M. and F. Faoro. 2008. Abscisic acid is involved in chitosan-induced resistance to tobacco necrosis virus (TNV). Plant Physiology and Biochemistry. 46(12): 1106–1111.
Jia, D.D., Z.Q. Lan and T. Wu. 2020. Ethylene is the key signal in the accumulation process of scopoletin in noni (Morinda citrifolia). Scientia Horticulturae. 261(17): 108980.
Kachroo, A., H. Liu, X. Yuan, T. Kurokawa and P. Kachroo, 2022. Systemic acquired resistance-associated transport and metabolic regulation of salicylic acid and glycerol-3-phosphate. Essays in Biochemistry. 66(5): 673–681.
Kidwai, M., I.Z. Ahmad and D. Chakrabarty. 2020. Class III peroxidase: An indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Reports. 39(11): 1381–1393.
Kim, Y.J. and B.K. Hwang. 2000. Pepper gene encoding a basic pathogenesis-related 1 protein is pathogen and ethylene inducible. Physiologia Plantarum. 108(1): 51-60.
Motshakeri, M. and H.M. Ghazali. 2015. Nutritional, phytochemical and commercial quality of noni fruit: A multi-beneficial gift from nature. Trends in Food Science & Technology. 45(1): 118–129.
Li, Y.Z., X.H. Zheng, H.L. Tang, J.W. Zhu and J.M. Yang. 2003. Increase of β-1, 3-glucanase and chitinase activities in cotton callus cells treated by salicylic acid and toxin of Verticillium dahliae. Acta Botanica Sinica. 45(7): 802-808.
Oerke, E.C. and U. Steiner. 2025. Intra-leaf variability of incubation period sheds new light on the lifestyle of Cercospora beticola in sugar beets. Journal of Fungi. 11(3): 211.
Santos, T., J.R. Villanueva and C. Nombela, 1977. Production and catabolite repression of Penicillium italicum beta-glucanases. Journal of Bacteriology. 129(1): 52–58.
Su, B.N., A.D. Pawlus, H.A. Jung, W.J. Keller, J.L. McLaughlin and A.D. Kinghorn. 2005. Chemical constituents of the fruits of Morinda citrifolia (noni) and their antioxidant activity. Journal of Natural Products. 68(4): 592–595.
Wang, M.Y. and C. Su. 2001. Cancer preventive effect of Morinda citrifolia (Noni). Annals of the New York Academy of Sciences. 952(1): 161–168.
Yang S.C., T.I. Chen, K.Y. Li and T.C. Tsai. 2007. Change in phenolic compound content, reductive capacity and ACE inhibitory activity in noni juice during traditional fermentation. Journal of Food and Drug Analysis. 15(3): 290-298.
Zhang, H., Q. Huang, L. Yi, X. Song, L. Li, G. Deng, J. Liang, F. Chen, M. Yu and H. Long. 2021. PAL-mediated SA biosynthesis pathway contributes to nematode resistance in wheat. The Plant Journal. 107(3): 698–712.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Thai Agricultural Research Journal

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Thai Agricultural Research Journal