Exploring a Hidden Structure in New World Bats: The Pollex


  • DENNIS CASTILLO-FIGUEROA Departamento de Biología, Unidad de Ecología y Sistemática (UNESIS), Pontificia Universidad Javeriana, Bogotá 11001000, COLOMBIA


Chiroptera, functional morphology, locomotion, new world bats, natural history


Bats have an extraordinary morphological diversity and most of the studies have focused on exploring ecomorphology of wings, ears, nostrils, tooth, and skull. However, structures like the pollex have not been assessed yet. Here, I describe pollex measurements of 97 Neotropical bat species, analyze variation among guilds, and explore correlations with wing morphology. Besides sanguinivores, frugivores that use cluttered habitats and employ gleaning strategy showed larger pollex, whereas aerial insectivores that use open spaces presented smaller pollex. I found a negative relationship between pollex size and hand-wing length, but a positive relationship between pollex size and wing width. Results suggest a potential importance of the pollex on resource exploitation, especially in guilds associated to handling objects such as large fruits. Conversely, the pollex may be useless in aerial insectivores that employ other structures like uropatagium or dactylopatagium for prey capture and manipulation. The pollex is related to wing morphology and habitat use given that species with larger pollex and wide wings obtain their resources in cluttered habitats, while species with shorter pollex and longer wings acquire their preys over open spaces. It is important to keep documenting natural history of bats by studying unexplored structures that unveil the functional importance of morphology in resource exploitation.

Author Biography

DENNIS CASTILLO-FIGUEROA, Departamento de Biología, Unidad de Ecología y Sistemática (UNESIS), Pontificia Universidad Javeriana, Bogotá 11001000, COLOMBIA

Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, COLOMBIA


Adams, R.A, Snode, E.R, and Shaw, J.B. 2012. Flapping tail membrane in bats produces potentially important thrust during horizontal takeoffs and very slow flight. PLoS ONE, 7(2): e32074. https://doi.org/10.1371/journal.pone.0032074.

Aguirre, L., Montaño-Centellas, F., Gavilanez, M. and Stevens, R. 2016. Taxonomic and phylogenetic determinantes of functional composition of bolivian bat assamblages. PLoS ONE, 11(7): e0158170. 38. https://doi.org/10.1371/journal.pone.0158170.

Arango-Diago, S., Castillo-Figueroa, D., Albarracín-Caro, J. and Pérez-Torres, J. 2020. Dietary variation and reproductive status of Mormoops megalophylla (Chiroptera: Mormoopidae) in a cave of northeastern Andes from Colombia. Mastozoologia Neotropical, 7(2): 258–265. https://doi.org/10.31687/saremMN.

Arita, H., Vargas-Barón, J. and Villalobos, F. 2014. Latitudinal gradients of genus richness and endemism and the diversification of New World bats. Ecography, 37(11): 1024–1033. https://doi.org/10.1111/ecog.00720.

Brokaw, A.F. and Smotherman, M. 2020. Role of ecology in shaping external nasal morphology in bats and implications for olfactory tracking. Plos One, 15(1): e0226689. http://doi.org/10.1371/journal.pone.0226689.

Castillo-Figueroa, D. 2020. Ecological Morphology of Neotropical Bat Wing Structures. Zoological Studies 59: 60. http://doi.org/10.6620/ZS.2020.59-60.

Castillo-Figueroa, D. and Pérez-Torres, J. 2021. On the development of a trait-based approach for studying Neotropical bats. Papéis Avulsos De Zoologia, 61: e20216124. https://doi.org/10.11606/1807-0205/2021.61.24.

Cely-Gómez, M.A. and Castillo-Figueroa, D. 2019. Diet of dominant frugivorous bat species in an oil palm landscape from Colombian Llanos: implications for forest conservation and recovery. Therya, 10(2): 149–153. https://doi.org/10.12933/therya-19-682.

Cely-Gómez, M.A., Castillo-Figueroa, D. and Pérez-Torres, J. 2021. Bat Assemblage in an Oil Palm Plantation from the Colombian Llanos Foothills. Tropical life sciences research, 32(1): 47–61. https://doi.org/10.21315/tlsr2021.32.1.3.

Dietz, C., Dietz, I., and Siemers, B.M. 2006. Wing measurement variations in the five European horseshoe bat species (Chiroptera: Rhinolophidae). Journal of Mammalogy, 87(6): 1241–1251. doi:10.1644/05-MAMM-A-299R2.1.

Estrada-Villegas, S., Meyer, C., and Kalko, E. 2010. Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biological Conservation, 143(3): 597–608. https://doi.org/j.biocon.2009.11.009.

Fleming, T.H. 1991. The relationship between body size, diet, and habitat use in frugivorous bats, genus Carollia (Phyllostomidae). Journal of Mammalogy, 72(3): 493–501. https://doi.org/10.2307/1382132.

Freeman, P. W. 1981. Correspondence of food habits and morphology in insectivorous bats. Journal of Mammalogy, 62(1):166–173. https://doi.org/10.2307/1380489.

Freeman, P. W. 1998. Form, function, and evolution in skulls and teeth of bats. In: Kunz, T.H and Racey, P.A. (Eds.). Bat biology and conservation. Smithsonian Institution Scholarly Press, Washington D.C., pp. 140–156.

Freeman, P. W. 2000. Macroevolution in Microchiroptera: recoupling morphology and ecology with phylogeny. Evolutionary ecology research, 2: 317–335.

Frick, W.F., Kingston, T. and Flanders, J. 2019. A review of the major threats and challenges to global bat conservation. Annals of the New York Academy of Sciences., 1469(1): 5–25 http://doi.org/10.1111/nyas.14045.

Galetti, M., Pedrosa, F., Keuroghlian, A. and Sazima, I. 2016. Liquid lunch – vampire bats feed on invasive feral pigs and other ungulates. Frontiers in Ecology and the Environment, 14(9): 505–506.

Gardiner, J.D., Codd, J.R. and Nudds, R.L. 2011a. An association between ear and tail morphologies of bats and their foraging style. Canadian Journal of Zoology, 89: 90-99.

Gardiner, J.D., Dimitriadis, G., Codd, J.R. snf Nudds, R.L. 2011b. A potential role for bat tail membranes in flight control. Plos One, 6: e18214. https://doi.org/10.1371/journal.pone.0018214.

Gardner AL (Ed.). 2007. Mammals of South America. Volume 1: Marsupials, Xenarthrans, Shrews, and Bats. The University of Chicago Press, Chicago, 669 pp.

Giannini, N.P. and Kalko, E.K. 2004. Trophic structure in a large assemblage of Phyllostomid bats in Panama. Oikos, 105(2): 209–222. https://doi.org/10.1111/j.0030-1299.2004.12690.x.

Granatosky, M.C. 2018. Forelimb and hindlimb loading patterns during quadrupedal locomotion in the large flying fox (Pteropus vampyrus) and common vampire bat (Desmodus rotundus). Journal of Zoology, 305: 63–72. https://doi.org/10.1111/jzo.12538.

Guisande, C., Heine, J., González-DaCosta, J. and García-Roselló, E. 2014. RWizard Software. Available from: http://www. ipez.es/rwizard (Accessed on 23 Mar. 2021).

Hutson, A.M., Mickleburgh, S.P. and Racey P.A. 2001. Microchiropteran Bats: Global Status Survey and Conservation Action Plan. IUCN/SSC, Switzerland, 256 pp.

Integrated Taxonomic Information System on-line database (ITIS). 2021. Chiroptera. Available at: www.itis.gov. (Accessed 27 Dec. 2021.)

JASP Team. 2020. JASP (Version 0.14.1). Available from: https://jasp-stats.org/. (Accessed 2021 May 12).

Kalko, E.K.V. 1995. Insect pursuit, prey capture and echolocation in pipistrelle bats (Microchiroptera). Animal Behaviour, 50(4): 861–880. https://doi.org/10.1016/0003-3472(95)80090-5

Kalko, E.K.V., Handley, C.O. and Handley, D. 1996. Organization, diversity and long-term dynamics of a Neotropical bat community. In: Cody, M.L. and Smallwood, J.A. (Eds). Long-term studies of vertebrate communities. Academic Press, San Diego, USA, pp. 503–553. https://doi.org/10.1016/b978-012178075-3/50017-9.

Lobova, T.A., Geiselman, C.K. and Mori, S.A., 2009. Seed Dispersal by Bats in the Neotropics. The New York Botanical Garden, New York, 465 pp.

Marinello, M.M. and Bernard, E. 2014. Wing morphology of Neotropical bats: a quantitative and qualitative analysis with implications for habitat use. Canadian Journal of Zoology, 92(2): 141–147. https://doi.org/10.1139/cjz-2013-0127.

Mammal Diversity Database. 2021. American Society of Mammalogists. Available from: www.mammaldiversity.org. (Accessed 5 Jan 2021).

Morales-Martínez, D., Rodríguez-Posada, M., Fernandez-Rodríguez, C., Calderón-Capote, M. and Gutiérrez-Sanabria, D. 2018. Spatial variation of bat diversity between three floodplain-savanna ecosystems of the Colombian Llanos. Therya, 9(1): 41–52. https://doi.org/10.12933/therya-18-537.

Montaño-Centellas, F., Moya, M. I., Aguirre, L. F., Galeon, R., Palabrala, O., Hurtado, R., Galraza, I. and Tordoya J. 2015. Community and species-level responses of phyllostomid bats to a disturbance gradient in the tropical Andes. Acta Oecologica, 62: 10–17. https://doi.org/10.1016/j.actao.2014.11.002.

Norberg, U.M. and Rayner, J.M. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society B: Biological Sciences, 316: 335–427. https://doi.org/10.1098/rstb.1987.0030.

Norberg, U.M. 1994. Wing design, flight performance, and habitat use in bats. In: Wainwright, I.C. & Reilly, S.M. (Eds.). Ecological morphology: integrative organismal biology. Chicago, University of Chicago Press, pp. 205–239.

Olaya-Rodríguez, H., Pérez-Torrez, J. and Londoño, M.C. 2019. Use of forest strata by bats according to wing morphology and habitat complexity in a fragment of tropical dry forest (Colombia). Journal of Bat Research and Conservation, 12(1): 83–91. https://doi.org/10.14709/BarbJ.12.1.2019.11.

Quinn, T.H. and Baumel, J.J. 1993. Chiropteran Tendon Locking Mechanism. Journal of Morphology, 216: 197-208.

Ríos-Blanco, M.C. and Pérez-Torres, J. 2015. Dieta de las especies dominantes del ensamblaje de murciélagos frugívoros en un bosque seco tropical (Colombia). Mastozoología Neotropical, 22(1): 103–111.

Rhodes, M.P. 2002. Assessment of sources of variance and patterns of overlap in microchiropteran wing morphology in southeast Queensland, Australia. Canadian Journal of Zoology, 80(3):450–460. https://doi.org/10.1139/ z02-029.

Sampaio, E.M., Kalko, E.K., Bernard, E., Rodríguez-Herrera, B. and Handley, C.O. 2003. A biodiversity assessment of bats (Chiroptera) in a tropical lowland rainforest of Central Amazonia, including methodological and conservation considerations. Studies of Neotropical Fauna and Environment, 38(1):17–31. https://doi.org/10.1076/snfe.

Santana, S.E., Strait, S. and Dumont, E.R. 2011. The better to eat you with: functional correlates of tooth structure in bats. Functional Ecology, 25(4): 839–847. https://doi.org/10.1111/j.1365-2435.2011.01832.x.

Santana, S., Grosse, I. and Dummont, E. 2012. Dietary hardness, loading behavior, and the evolution of skull form in bats. Evolution, 66(8): 2587–2598. https://doi.org/10.1111/j.1558-5646.2012.01615.x.

Sazima, M.; Buzato, S. & Sazima, I. 2003. Dyssochroma viridiflorum(Solanaceae): A reproductively bat-dependent epiphyte from the Atlantic rainforest in Brazil. Annals of Botany, 92: 725–730.

Saunders, M. and Barclay, R. 1992. Ecomorphology of insectivorous bats: a test of predictions using two morphologically similar species. Ecology, 73(4): 1335–1345. https://doi.org/10.2307/1940680.

Tschapka, M. 2003. Pollination of the understorey palm Calyptrogyne ghiesbreghtiana by hovering and perching bats. Biological Journal of the Linnean Society, 80(2): 281–288.

Uieda, W. and Vasconcellos-Neto, J. 1984. Dispersão de Solanum spp. (Solanaceae) por morcegos, na região de Manaus, AM, Brasil. Revista Brasileira de Zoologia, 2(7): 449–458.

Vandoros, J.D. and Dumont, E.R. 2004. Use of the wings in manipulative and suspensory behaviors during feeding by frugivorous bats. Journal of Experimental Zoology, 301A: 361–366. https://doi.org/10.1002/jez.a.20040.

Velazco, P.M. 2005. Morphological phylogeny of the bat genus Platyrrhinus Saussure, 1860 (Chiroptera: Phyllostomidae) with the description of four new species. Fieldiana Zoology, New Series 105:1–53. https://doi.org/10.3158/0015-0754(2005)105 [1:MPOTBG ]2.0.CO;2.

Velazco, P.M., Gardner, A.L. and Patterson, B. 2010. Systematics of the Platyrrhinus helleri species complex (Chiroptera: Phyllostomidae), with descriptions of two new species. Zoological Journal of the Linnean Society, 159(3): 785–812. https://doi.org/10.1111/j.1096- 3642.2009.00610.x.

Vieira, M.F. and Carvalho-Okano, R.M. 1996. Pollination biology of Mabea fistulifera (Euphorbiaceae) in Southeastern Brazil. Biotropica, 28(1): 61–68.

Walldorf, V. and Mehlhorn, H. 2013. Bats: A Glimpse on Their Astonishing Morphology and Lifestyle. In: Klimpel, S. and Mehlhorn, H. (Eds.). Bats (Chiroptera) as Vectors of Diseases and Parasites Volume 5 of the series Parasitology Research Monographs. Berlin, Springer, pp 7–24.

Wilson D. E. and Mittermeier R. A. (Eds). 2019. Handbook of the Mammals of the World. Volume 9. Bats. Lynx Editions, Barcelona, 1008 pp.

Pollex measurements taken from bat vouchers. The specimen shown in the figure corresponds to a male of Sturnira ludovici Anthony, 1924.




How to Cite

CASTILLO-FIGUEROA, D. 2022. Exploring a Hidden Structure in New World Bats: The Pollex. Tropical Natural History. 22, 1 (Jun. 2022), 1–11.



Original Articles