Exploring Pliocene Vegetation Variability through Wood Fossil Analysis from Jasinga, Indonesia

Authors

  • Danni Gathot Harbowo Geological Engineering Study Program, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, INDONESIA: Department of Geology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Wayhui, Lampung, 35365, INDONESIA
  • Aswan Geological Engineering Study Program, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, INDONESIA
  • Siti Khodijah Chaerun Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, INDONESIA
  • Widi Astuti Research Center for Mining Technology, National Research and Innovation Agency (BRIN), Jl. Ir. Sutami Km. 15, Tanjung Bintang, Lampung, 35361, INDONESIA
  • Yahdi Zaim Geological Engineering Study Program, Faculty of Earth Science and Technology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, 40132, INDONESIA: Department of Geology, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Wayhui, Lampung, 35365, INDONESIA

DOI:

https://doi.org/10.58837/tnh.24.1.258579

Keywords:

Petrified wood, Dipterocarpaceae, Sundaland, Paleobotany, Paleontology

Abstract

Residents of Jasinga, West Java, consistently reported the presence of an abundance of wood fossils. We examined geological settings and wood fossils to investigate the paleovegetation types in the region. This research aims to map the distribution of wood fossils and interpret the paleoenvironment based on paleontological evidence. Lithostratigraphic measurements were performed, followed by a description of wood fossil anatomy in micro-thin section observations, isolation of palynological fossils from the host rock through chemical preparation techniques, and geochemical analysis using X-ray fluorescence spectroscopy. Our findings indicate that the area comprises Pliocene fluvial-volcanoclastic deposits containing several dipterocarp wood fossils, including Parashoreoxylon, Dryobalaonoxylon, Shoreoxylon, Anisopteroxylon, and Dipterocarpoxylon. There were also non-dipterocarp wood fossils from Apocynaceae, Combretaceae, Fabaceae, and Olacaceae. Most wood fossils in these deposits were silicified (SiO2: 92.7 ± 1.88%), preserving the wood tissue structures. Additionally, the wood fossil-rich strata contains fossilized palynomorphs, including pollen fossils from Dipterocarpaceae, Convolvulaceae, and Florschuetzia, and spore fossils from Stenochlaenidites, Verrucatosporites, and Lygodium, indicating the presence of a more diverse paleovegetation. These results support the existence of paleotropical rainforests. Our study suggests that paleoclimatic and paleovolcanic settings have significantly shaped the paleotropical rainforest ecosystems in the southern part of Sundaland during the Early Pliocene.

References

Aswan, A., Rijani, S. and Rizal, Y. 2013. Shell bed identification of Kaliwangu Formation and its sedimentary cycle significance, Sumedang, West Java. Indonesian Journal on Geoscience, 8: 1-11.

Baas, P., van Heuven, B.J., Ng, X.Y. and Vander, V.N. 2019. Biomechanical and hydraulic challenges for a tropical swamp forest and driftwood tree–Alstonia spatulata Blume (Apocynaceae). Garden Bulletin Singapore, 71: 231-244.

Berger, L. G. 1923. Fossiele houtsoorten uit het Tertiair van Zuid-Sumatra. Geologie En Mijnbouw, 7: 143−148.

Berghuis, H.W.K., Troelstra, S.R. and Zaim, Y. 2019. Plio-pleistocene foraminiferal biostratigraphy of the eastern Kendeng zone (Java, Indonesia): the Marmoyo and Sumberingin sections. Palaeogeography, Palaeoclimatology, Palaeoecology, 528: 218-231.

BIG-RI (Badan Informasi Geospasial Republik Indonesia). 2019. Peta Rupabumi Digital Indonesia. Bogor, Jawa-Barat. Available from: http://tanahair.indonesia.go.id/portal-web/, December 23th, 2022.

Brearley, F.Q., Banin, L.F. and Saner, P. 2016. The ecology of the Asian dipterocarps. Plant Ecology and Diversity, 9: 429-436.

Chechina, M. and Hamann, A. 2019. Climatic drivers of dipterocarp mass-flowering in South-East Asia. Journal of Tropical Ecology, 35: 108-117.

de Pernia, N.E. and Miller, R.B. 1991. Adapting the IAWA list of microscopic features for hardwood identification to DELTA. IAWA journal, 12: 34-50.

Erdmant, G., 1943. An Introduction to Pollen Analysis. Chronica Botanica, Waltham, Massachusetts, 239pp.

Faegri, K. and Iversen, J., 1975. Textbook of Pollen Analysis, 3rd Revised Edition. Hafner Press, New York, 295pp.

Fauzielly, L., Winantris, Fauzielly, L. and Damayanti, R. 2017. Dryobalanoxylon sp.: a fossil wood preserved in the Genteng Formation from Lebak Regency, Banten Province, Indonesia. Journal of Geological Sciences and Applied Geology, 2: 119-126.

Fuji, K. 2014. Soil acidification and adaptations of plants and microorganisms in Bornean tropical forests. Ecological research, 29: 371-381.

Germeraad, J., Hoping, C.A. and Muller, J. 1968. Palynology of tertiary sediments from ropical areas. Review of Palaeobotany and Palynology, 6: 189-348.

Ghazoul, J. 2016. Dipterocarp Biology, Ecology, and Conservation. Oxford University Press, Oxford. 320pp.

Ghosh, S.S. and Kazmi, M.H. 1958. Anisopteroxylon bengalensis gen. et sp. nov.–new fossil wood from Microlithic site of West Bengal. Science. & Culture, 23: 485-487.

Giacosa, J.P.R., Morbelli, M.A. and Giudice, G.E. 2013. Comparative palynological analysis of Lygodium venustum Sw. and L. volubile Sw. (Lygodiaceae). Anais da Academia Brasileira de Ciências, 85: 699-707.

Hamilton, R., Hall, T., Stevenson, J. and Penny, D. 2019. Distinguishing the pollen of Dipterocarpaceae from the seasonally dry and moist tropics of south-east Asia using light microscopy. Review of Palaeobotany and Palynology, 263: 117-133.

Harbowo, D.G., Nahar, R.N.F.A., Sari, D., Julian, T., Kuswara, T.A., Abimayu, R.A., Lajona, R.A. and Huzaifah, S. 2022. The significances of Cretaceous petrified wood fossils from Padangcermin, Lampung in paleoenvironmental perspectives. IOP Conference Series: Earth and Environmental Science, 1047: 012016.

Harbowo, D.G., Pratama, D., Priadi, B., Julian, T., Sihombing, D.J.P. and Sitinjak, E.S. 2023. The marine fossils and paleoecological significance of the Southern edge of South Sumatra Basin in Linggapura Lampung, Indonesia. IOP Conference Series: Earth and Environmental Science, 1245: 012001.

Harnelly, E., Thomy, Z. and Fathiya, N. 2018. Phylogenetic analysis of Dipterocarpaceae in Ketambe Research Station, Gunung Leuser National Park (Sumatra, Indonesia) based on rbcL and matK genes. Biodiversitas Journal of Biological Diversity, 19: 1074-1080.

Hapsari, K.A. and Sukarsa, S. 2012. Paleovegetasi berdasarkan bukti palinologi kala Pliosen Cekungan Banyumas. Majalah Ilmiah Biologi BIOSFERA, 29: 151-167.

Heriyanto, N. M., Samsoedin, I. and Bismark, M. 2019. Keanekaragaman hayati flora dan fauna di Kawasan Hutan Bukit Datuk Dumai Provinsi Riau. Jurnal Sylva Lestari, 7: 82-94.

Holden, R., 1916. A fossil wood from Burma. Records of the Geological Survey of India, 47:267-271.

Humphreys, J.M., Elsner, J.B., Jagger, T.H. and Pau, S. 2017. A Bayesian geostatistical approach to modeling global distributions of Lygodium microphyllum under projected climate warming. Ecological Modelling, 363: 192-206.

IAWA Committee. 1989. IAWA List of microscopic features for hardwood identification by an IAWA Committee. E.A. Wheeler, P. Baas & P.E. Gasson (eds.). IAWA Bulletin. 10: 219-332.

InsideWood. 2004-onwards. Available from: http://insidewood.lib. ncsu.edu/search, January 1st 2024.

Lee, D. C., Powell, V. J. and Lindsell, J. A. 2019. Understanding landscape and plot-scale habitat utilisation by Malayan sun bear (Helarctos malayanus) in degraded lowland forest. Acta Oecologica, 96: 1-9.

Mandang, Y.I. and Kagemori, N. 2004. A fossil wood of Dipterocarpaceae from Pliocene deposit in the west region of Java Island, Indonesia. Biodiversitas Journal of Biological Diversity, 5: 28-35.

Mandang, Y.I. and Martono, D. 1996. Keanekaragaman fosil kayu di bagian barat Pulau Jawa. Jurnal Penelitian Hasil Hutan, 14: 192-203.

Manvar, M. and Desai, T. 2013. Phytochemical and pharmacological profile of Ipomoea aquatica. Indian Journal of Medical Sciences, 67: p.49.

Mao, L. and Foong, S.Y. 2013. Tracing ancestral biogeography of Sonneratia based on fossil pollen and their probable modern analogues. Palaeoworld, 22: 133-143.

Martodjojo, S., 1984. Evolution of Bogor Basin, West Java. Doctorate Thesis, Institut Teknologi Bandung, Bandung, 396pp.

Marjenah, M. and Putri, N.P. 2017. Morphological characteristic and physical environment of Terminalia catappa in East Kalimantan, Indonesia. Asian Journal of Forestry, 1: 33-39.

Morley, R.J. 1998. Palynological evidence for Tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate. Biogeography and Geological Evolution of SE Asia: 211-234.

Morley, R.J. 2000. Origin and Evolution of Tropical Rain Forests, John Wiley & Sons, New York, 362 pp.

Morley, R.J., Morley, H.P. and Swiecicki, T. 2016. Mio-Pliocene Palaeogeography, uplands and river systems of the Sunda Region based on mapping within a framework of Vim Depositional Cycles. IPA Fortieth Annual Convention & Exhibition, Jakarta, IPA16- 506-G.

Müller-Stoll, W.R. and Mädel, E. 1967. Die fossilen Leguminosen-Hölzer. Eine Revision der mit Leguminosen verglichenen fossilen Hölzer und Beschreibungen älterer und neuer Arten. Palaeontographica Abteilung B: 95-174.

Mustoe, G.E. 2017. Wood petrifaction: A new view of permineralization and replacement. Geosciences, 7(4): 119.

Mustoe, G.E. 2023. Silicification of wood: An overview. Minerals, 13: 206.

Nichols, G. 2009. Sedimentology and stratigraphy. John Wiley & Sons.

Nutt, K. S., Burslem, D. F., Maycock, C. R., Ghazoul, J., Khoo, E., Hastie, A. Y. and Kettle, C. J. 2016. Genetic diversity affects seedling survival but not growth or seed germination in the Bornean endemic dipterocarp Parashorea tomentella. Plant Ecology and Diversity, 9: 471-481.

Ogata, K., Fujii, T., Abe, H. and Baas, P. 2008. Identification of the Timbers of Southeast Asia and the Western Pacific. Kaiseisha Press, Otsu, 480pp.

Paldat. 2021. PalDat - palynological database. University of Vienna, Rennweg, Austria. Available from: https://www.paldat.org/, January 1st 2024.

Pin, C., Phan, C., Prum, S. and Gray, T.N.E. 2013. Structure and composition of deciduous dipterocarp forest in the Eastern Plains Landscape, Cambodia. Cambodian Journal of Natural History: 27-34.

Rachman, R.S. and Winantris, W. 2023. Palynostratigraphy Subang, Kaliwangu, and Citalang Formation, from Cikandung River Passage, Sumedang Regency, West Java. Jurnal Geosains dan Teknologi, 5: 140-150.

Randle, M., Stevens, N. and Midgley, G. 2018. Comparing the differential effects of canopy shading by Dichrostachys cinerea and Terminalia sericea on grass biomass. South African Journal of Botany, 119: 271-277.

Ritonga, F.N., Dwiyanti, F.G., Kusmana, C., Siregar, U.J. and Siregar, I.Z. 2018. Population genetics and ecology of Sumatran camphor (Dryobalanops aromatica) in natural and community-owned forests in Indonesia. Biodiversitas: Journal of Biological Diversity, 19: 2175-2182.

Robiansyah, I. and Hamidi, A. 2019. Population status of endemic tree Kokoleceran (Vatica bantamensis) in Ujung Kulon National Park, Indonesia. Biodiversitas: Journal of Biological Diversity, 20: 296-302.

Schönfeld, G. 1947. Hölzer aus den Tertiär von Kolumbien. Abh Senckenb Naturforsch Ges, 474: 1-53.

Srivastava, R. and Kagemori, N. 2001. Fossil wood of Dryobalanops from Pliocene deposit of Indonesia. Paleobotanist, 50: 395-401.

Su, H.J., Hu, J.M., Anderson, F.E., Der, J.P. and Nickrent, D.L. 2015. Phylogenetic relationships of Santalales with insights into the origins of holoparasitic Balanophoraceae. Taxon, 64: 491-506.

Suedy, S. W. A., Muhadiono, M., Sabiham, S. and Qoyim, I. 2012. Fosil polen mangrove berumur Pliosen dari Formasi Tapak daerah Kedung Randu, Banyumas. Bioma Berkala Ilmiah Biologi, 14: 17-24.

Sujatmiko and Santosa, S. 1992. Peta geologi lembar Leuwidamar. Pusat Penelitian dan Pengembangan Geologi, Departemen Pertambangan dan Energi, Bandung, Indonesia.

Sukapti, W.S. and Dewi, K.T. 2023. Perubahan lingkungan Holosen Akhir berdasarkan rekaman polen dari Delta Berau-Kalimantan Timur. Jurnal Geologi dan Sumberdaya Mineral, 24: 23-29.

Susanty, F.H., Suhendang, E., Jaya, I.N.S. and Kusmana, C. 2013. Keragaan hutan Dipterocarpaceae dengan pendekatan model struktur tegakan. Jurnal Penelitian Hutan Tanaman, 10: 185-199.

Wakhidah, A.Z., Sawitri, I.G.A.R. and Mustaqim, W.A. 2020. Shorea javanica Koord. and Valenton Dipterocarpaceae. In Ethnobotany of the Mountain Regions of Southeast Asia. Cham: Springer International Publishing: 1-7

Wilf, P., Zou, X., Donovan, M.P., Kocsis, L., Briguglio, A., Shaw, D., Slik, J.F. and Lambiase, J.J. 2022. First fossil-leaf floras from Brunei Darussalam show dipterocarp dominance in Borneo by the Pliocene. Peer Journal, 10: e12949.

Wheeler, E.A. 2011. InsideWood – A web resource for hardwood identification. IAWA Journal, 32: 199-211.

Wheeler, E.A., Gasson, P.E. and Baas, P. 2020. Using the InsideWood web site: potentials and pitfalls. IAWA Journal, 41: 412-462.

Yulianto, E., Sukapti, W.S. and Setiawan, R. 2019. Palynostratigraphy, paleoecology and paleoclimatology of Early Pleistocene based on pollen study of Pucangan Formation in Sangiran Area. Jurnal Geologi dan Sumberdaya Mineral, 20: 133-141.

Downloads

Published

2024-05-26

How to Cite

[1]
Harbowo, D.G., Aswan, Chaerun, S.K. , Astuti, W. and Zaim, Y. 2024. Exploring Pliocene Vegetation Variability through Wood Fossil Analysis from Jasinga, Indonesia. Tropical Natural History. 24, 1 (May 2024), 31–47. DOI:https://doi.org/10.58837/tnh.24.1.258579.