Integrative Taxonomy of a New Thyropygus Pocock, 1894 Species from Thailand (Diplopoda: Spirostreptida: Harpagophoridae)

Authors

  • Piyatida Pimvichai Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, THAILAND
  • Pongpun Prasankok School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, THAILAND
  • Thierry Backeljau Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, BELGIUM: Evolutionary Ecology Group, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, BELGIUM

DOI:

https://doi.org/10.58837/tnh.25.8.266935

Keywords:

COI, gonopod, phylogeny

Abstract

A new juliformian millipede species, Thyropygus sirindhornae sp. nov., is described from Chiang Rai Province, Thailand and assigned to the Thyropygus allevatus group based on two diagnostic gonopodal characters: (1) the gonopod telopodite with both tibial and femoral spines, and (2) a notably long tibial spine recurved toward the femoral spine. Despite its affiliation with the informal T. allevatus group, T. sirindhornae sp. nov. cannot be assigned to one of the four informal subgroups of the T. allevatus group because it lacks any of the diagnostic characters of these subgroups. Similarly, while the COI DNA barcode data support the distinctiveness of T. sirindhornae sp. nov. from other Thyropygus species within the T. allevatus group (mean interspecific sequence divergence of 0.16 ± 0.02, range: 0.12–0.19), they do not provide information about the sister group relationships or subgroup assignment of the new species. As a result, T. sirindhornae sp. nov. is tentatively assigned to the T. allevatus group, but is labelled as “incertae sedis” with respect to its sister group relations and subgroup classification. In fact, as the COI phylogeny only included species of the T. allevatus group, the assignment of T. sirindhornae sp. nov. to this informal species group needs to be confirmed by including representatives of other informal Thyropygus species groups.

References

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723. https://doi:10.1109/TAC.1974.1100705

Darriba, D., Taboada, G.L., Doallo, R. and Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9: 772. https://doi.org/10.1038/ nmeth.2109.

Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32: 1792–1797. https://doi.org/10.1093/nar/gkh340

Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cyto-chrome c oxidase subunit I from diverse metazoan invertebra-tes. Molecular Marine Biology and Biotechnology, 3: 294–299.

Hebert, P.D.N, Cywinska, A. Ball, S.L. and DeWaard, J.R. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society London, B 270: 313–321. https://doi.org/ 10.1098/rspb.2002.2218

Hillis, D. and Bull, J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42: 182–192. https://doi.org/10.1093/sys bio/42.2.182

Hoffman, R.L. 1975. Studies on spirostreptoid millipeds. XI. A review of some Indonesian genera of the family Harpago-phoridae. Journal of Natural History, 9: 121–152. https://doi. org/10.1080/00222937500770101

Huelsenbeck, J.P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17: 754–755. https:// doi.org/10.1093/bioinformatics/17.8.754

Miller, M.A., Pfeiffer, W. and Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. INSPEC, Accession Number: 11705685, pp. 1–8. https:// doi.org/10.1109/GCE.2010.5676129

Pimvichai, P., Enghoff, H. and Panha, S. 2009a. A revision of the Thyropygus allevatus group. Part 1: the T. opinatus subgroup (Diplopoda: Spirostreptida: Harpagophoridae). Zootaxa, 2016: 17–50. https://doi.org/10.11646/zootaxa.2165.1.1

Pimvichai, P., Enghoff, H. and Panha, S. 2009b. A revision of the Thyropygus allevatus group. Part 2: the T. bifurcus subgroup (Diplopoda, Spirostreptida, Harpagophoridae). Zootaxa, 2165: 1–15. https://doi.org/10.11646/zootaxa.2165.1.1

Pimvichai, P., Enghoff, H. and Panha, S. 2011a. A revision of the Thyropygus allevatus group. Part 3: the T. induratus subgroup (Diplopoda: Spirostreptida: Harpagophoridae). Zootaxa, 2941: 47–68. https://doi.org/10.11646/zootaxa.2941.1.3

Pimvichai, P., Enghoff, H. and Panha, S. 2011b. A revision of the Thyropygus allevatus group. Part 4: the T. cuisinieri subgroup (Diplopoda: Spirostreptida: Harpagophoridae). Zootaxa, 2980: 37–48. https://doi.org/10.11646/zootaxa.2980.1.3

Pimvichai, P., Enghoff, H. and Panha, S. 2014. Molecular phylo-geny of the Thyropygus allevatus group of giant millipedes and some closely related groups. Molecular Phylogenetics and Evolution, 71: 170–183. https://doi.org/10.1016/jympev.2013. 11.006

Pimvichai, P., Enghoff, H., Panha, S. and Backeljau, T. 2016. A revision of the Thyropygus allevatus group. Part V: nine new species of the extended opinatus subgroup, based on morpho-logical and DNA sequence data (Diplopoda: Spirostreptida: Harpagophoridae). European Journal of Taxonomy, 199: 1–37. http://dx.doi.org/10.5852/ejt.2016.199

Pimvichai, P., Enghoff, H., Panha, S. and Backeljau, T. 2020. Integrative taxonomy of the new millipede genus Coxobolellus, gen. nov. (Diplopoda: Spirobolida: Pseudospirobolellidae), with descriptions of ten new species. Invertebrate Systematics, 34: 591–617. https://doi.org/10.1071/IS20031

Pimvichai, P., Enghoff, H. and Backeljau, T. 2023. Morphological and DNA Sequence Data of Two New Millipede Species of the Thyropygus induratus Subgroup (Diplopoda: Spirostreptida: Harpagophoridae). Tropical Natural History, Supplement 7: 107–122.

Pimvichai, P., Enghoff, H., Breugelmans, K., Segers, B. and Backeljau, T. 2025. Morphological and DNA sequence data uncover a new millipede species in the Thyropygus opinatus subgroup and assign T. peninsularis to this subgroup (Diplo-poda: Spirostreptida: Harpagophoridae). PeerJ, 13: e19277. http://doi.org/10.7717/peerj.19277.

San Mauro, D. and Agorreta, A. 2010. Molecular systematics: A synthesis of the common methods and the state of knowledge. Cellular & Molecular Biology Letters, 15: 311–341. https://doi. org/10.2478/s11658-010-0010-8

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30: 1312–1313. https://doi.org/10.1093/ bioinformatics/btu033

Tamura, K., Stecher, G., and Kumar, S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38: 3022–3027. https://doi.org/10.1093/molbev/ msab120.

Xia, X. 2018. DAMBE7: new and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution, 35: 1550–1552. https://doi.org/10.1093/molbev/ msy073

Published

2025-10-14

How to Cite

[1]
Pimvichai, P., Prasankok, P. and Backeljau, T. 2025. Integrative Taxonomy of a New Thyropygus Pocock, 1894 Species from Thailand (Diplopoda: Spirostreptida: Harpagophoridae). Tropical Natural History. 25, 8 (Oct. 2025), 108–120. DOI:https://doi.org/10.58837/tnh.25.8.266935.

Issue

Section

Original Articles