Cryptic Diversity within the Endemic Mekong Giant Earthworm, Amynthas mekongianus (Cognetti, 1922) (Clitellata: Megascolecidae) Across the Lower Mekong River Basin with Descriptions of a New Species
DOI:
https://doi.org/10.58837/tnh.25.8.267375Keywords:
conservation, earthworm, phylogeny, systematics, taxonomyAbstract
The Lower Mekong Basin is recognized as a region of remarkable biodiversity. However, it is currently experiencing severe degradation due to rapid economic development and the intensifying effects of climate change. Numerous species, including earthworms, are under increasing threat. In addition, Amynthas mekongianus (Cognetti, 1922) exhibits considerable intraspecific morphological variability, making its identification challenging. Therefore, the study aims to clarify species boundaries within the A. mekongianus complex in the Lower Mekong River Basin using both morphological and molecular approaches. Specimens were collected from multiple sites in the basin, and analyses revealed at least two putative species. Phylogenetic reconstructions (NJ, ML, and BI) together with species delimitation methods (ASAP, GMYC, and bPTP) consistently supported the recognition of two distinct lineages. These lineages differ primarily in body length, segment number, and spermathecae morphology. Accordingly, they are recognized as A. mekongianus sensu stricto and A. sirindhornae Nantarat & Bantaowong, sp. nov., which is formally described herein. This study enhances understanding of the evolutionary complexity and taxonomic status of the group, providing a foundation for future conservation and management strategies in the region.
References
Agapow, P.-M., Bininda-Emonds, O.R., Crandall, K.A., Gittleman, J.L., Mace, G.M., Marshall, J.C. and Purvis, A. 2004. The impact of species concept on biodiversity studies. The Qua-rterly Review of Biology 79(2): 161–179. https://doi.org/10. 1086/383542
Akaike, H. 1974. A new look at the statistical model identification., IEEE Transactions on Automatic Control. https://doi.org/10. 1109/ TAC.1974.1100705
Bantaowong, U., Chanabun, R. and Inkhavilay, K. 2023. Two new species of terrestrial earthworms of the genus Amynthas Kinberg, 1867 (Clitellata, Oligochaeta, Megascolecidae) from Northern Laos. Tropical Natural History 7(May): 165–172.
Bickford, D., Lohman, D.J., Sodhi, N.S., Ng, P.K.L., Meier, R., Winker, K., Ingram, K.K. and Das, I. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22(3): 148–155. https://doi.org/10.1016/j.tree.2006. 11.004
Blakemore, J.R., Csuzdi, C., Ito, M.T., Kaneko, N., Paoletti, M.G., Spiridonov, S.E., Uchida, T., van Praagh, B.D. 2007. Mega-scolex (Promegascolex) mekongianus Cognetti, 1922: Its extent, ecology and allocation to Amynthas (Oligochaeta: Megasco-lecidae). Opuscula Zoologica 36: 19–30.
Camacho, A., Picazo, A., Rochera, C., Santamans, A.C., Morant, D., Miralles-Lorenzo, J. and Castillo-Escrivà, A. 2017. Methane emissions in Spanish Saline Lakes: Current rates, temperature and salinity responses, and evolution under different climate change scenarios. Water 9(9): 699. https://doi.org/10.3390/ w9090659
Chanabun, R., Aoonkum, A., Seesamut, T., Bantaowong, U. and Panha, S. 2023. Four new terrestrial earthworm species from the northeast Thailand (Oligochaeta, Megascolecidae). Zoo-Keys 1176: 195–219. https://doi.org/10.3897/zookeys.1176. 106517
Chang, C.-H. and James, S. 2011. A critique of earthworm molecular phylogenetics. Pedobiologia 54: S3–S9. https://doi. org/10.1016/j.pedobi.2011.07.015
Cognetti de Martiis, L. 1922. Descrizione di tre nuovi Megasco-lecini. Bolettino dei Musei di Zoologia ed Anatomia comparata della R. Università di Torino, 37: 1–6.
Darriba, D., Taboada, G.L., Doallo, R. and Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772.
Delić, T., Trontelj, P., Rendoš, M. and Fišer, C. 2017. The impor-tance of naming cryptic species and the conservation of ende-mic subterranean amphipods. Scientific Reports 7(1): 1–12. https://doi.org/10.1038/s41598-017-02938-z
Dyer, N.A., Ravel, S., Choi, K.-S., Darby, A.C., Causse, S., Kapitano, B., Hall, M.J.R., Steen, K., Lutumba, P., Madinga, J., Torr, S.J., Okedi, L.M., Lehane, M.J. and Donnelly, M.J. 2011. Cryptic diversity within the major Trypanosomiasis vector glossina fuscipes revealed by molecular markers. PLoS Neglected Tropical Diseases 5(8): e1266. https://doi.org/10. 1371/journal.pntd. 0001266
Edwards C.A. and Arancon N.Q. 2022. Biology and Ecology of Earthworms. Springer, 567. https://doi.org/10.1007/978-0-387-74943-3
Felsenstein, J. 2008. Comparative methods with sampling error and within-species variation: Contrasts revisited and revised. The American Naturalist 17: 713–725.
Finston, T.L., Johnson, M.S., Humphreys, W.F., Eberhard, S.M. and Halse, S.A. 2007. Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16(2): 355–365. https://doi.org/10.1111/j.1365-294X.2006.03123.x
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cyto-chrome c oxidase subunit I from diverse metazoan inverte-brates. Molecular Marine Biology and Biotechnology 3(5): 294–299.
Fragoso, C., Kanyonyo, J., Moreno, A., Senapati, B.K., Blanchart, E. and Rodriguez, C. 1999. A survey of tropical earthworms : taxonomy, biogeography and environmental plasticity. Earth-worm Management in Tropical Agroecosystems. Wallingford: CABI. 1–26.
Fujisawa, T. and Barraclough, T.G. 2013. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Systematic Biology 62(5): 707–724. https://doi.org/10. 1093/sysbio/syt033
Gates, G.E. 1972, Burmese earthworms, an introduction to the systematics and biology of megadrile oligochaetes with special reference to the Southeast Asia. Transactions of the American Philosophical Society, 62: 1–326.
Guindon, S., Delsuc, F., Dufayard, J.F. and Gascuel, O. 2009. Esti-mating maximum likelihood phylogenies with PhyML. In: Posada, D., ed. Totowa, NJ: Humana Press. Pp. 113–137. https://doi.org/10.1007/978-1-59745-251-9_6
He, D., Wu, R., Feng, Y., Li, Y., Ding, C., Wang, W. and Yu, D.W. 2014. REVIEW: China’s transboundary waters: new paradigms for water and ecological security through applied ecology. Journal of Applied Ecology 51(5): 1159–1168. https://doi.org/ 10.1111/1365-2664.12298
Hong, Y. and James, S.W. 2013. Three new earthworm species of the genus Amynthas (Clitellata: Megascolecidae) from Mt. Chiak National Park, Korea. Zootaxa 3646(1): 75–81. https:// doi. org/10.11646/zootaxa.3646.1.6
Huyse, T. and Volckaert, F.A.M. 2002. Identification of a host-associated species complex using molecular and morphometric analyses, with the description of Gyrodactylus rugiensoides n. sp. (Gyrodactylidae, Monogenea). International Journal for Parasitology 32(7): 907–919.
Jeratthitikul, E., Bantaowong, U., Panha, S. and Bantaowong, U. 2017. DNA barcoding of the Thai species of terrestrial earth-worms in the genera Amynthas and Metaphire (Haplotaxida: Megascolecidae). European Journal of Soil Biology 81: 39–47. https://doi.org/10.1016/j.ejsobi.2017.06.004
Jeratthitikul, E., Phuangphong, S., Sutcharit, C., Prasankok, P., Kongim, B. and Panha, S. 2019. Integrative taxonomy reveals phenotypic plasticity in the freshwater mussel Contradens con-tradens (Bivalvia: Unionidae) in Thailand, with a description of a new species. Systematics and Biodiversity 17(2): 134–147. https://doi.org/10.1080/14772000.2018.1554607
Jin, Q., Li, J., Jiang, J. and Qiu, J. 2024. Four new earthworm species of the genera Amynthas and Metaphire (Oligochaeta, Megascolecidae) from Hunan and Anhui provinces, China. ZooKeys 1210: 247–271.
Jirapatrasilp, P., Prasankok, P., Sutcharit, C., Chanabun, R. and Panha, S. 2016. Two new Cambodian semi-aquatic earthworms in the genus Glyphidrilus Horst, 1889 (Oligochaeta, Almidae), based on morphological and molecular data. Zootaxa 4189(3): 543–558. https://doi.org/10.11646/zootaxa.4189.3.5
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16(2): 111–120. https://doi.org/10.1007/BF01731581
King, R.A., Tibble, A.L. and Symondson, W.O.C. 2008. Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. Molecular Ecology 17(21): 4684–4698.
Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35(6): 1547–1549. https://doi.org/10.1093/molbev/msy096
Lu, H.F., Du, L.N., Li, Z.Q., Chen, X.Y. and Yang, J.X. 2014. Morphological analysis of the Chinese Cipangopaludina species (Gastropoda; Caenogastropoda: Viviparidae). Zoolo-gical Research 35(6): 510–527. https://doi.org/10.13918/j.issn. 2095-8137.2014.6.510
Misirlioğlu, M., Reynolds, J.W., Stojanović, M., Trakić, T., Sekulić, J., James, S.W., Csuzdi, C., Decaëns, T., Lapied, E., Phillips, H.R.P., Cameron, E.K. and Brown, G. 2023. Earth-worms (Clitellata, Megadrili) of the world: an updated checklist of valid species and families, with notes on their distribution. Zootaxa 5255(1): 417–438. https://doi.org/10.11646/zootaxa. 5255.1.33
Narumon, S. and Boonsoong, B. 2006. Identification of freshwater invertebrates of the mekong river and its tributaries. Identi-fication of Freshwater Invertebrates of the Mekong River and Its Tributaries, 1–276.
Nguyen, T.T., Lam, D.H., Trinh, B.T.K. and Nguyen, A.D. 2020a. The megascolecid earthworms (Annelida, Oligochaeta, Megascolecidae) in the Phu Quoc island, Vietnam, with descriptions of three new species. ZooKeys 932: 1–25.
Nguyen, T.T., Tran, B.T.T., Lam, D.H. and Nguyen, A.D. 2020b. Four new species of Amynthas earthworms in southeastern Vietnam (Annelida, Oligochaeta, Megascolecidae). Zootaxa 4790(2): 277–290. https://doi.org/10.11646/zootaxa.4790.2.5
Novo, M., Almodóvar, A., Fernández, R., Trigo, D. and Cosín, D.J.D. 2010. Cryptic speciation of hormogastrid earthworms revealed by mitochondrial and nuclear data. Molecular Phylo-genetics and Evolution 56(1): 507–512.
Ohfuchi, S. 1937. On the species possessing four pairs of sperma-thecae in the genus Pheretima, together with the variability of some external and internal characteristics. Saito Ho-on Kai Museum Research Bulletin, 12: 31–136.
Puillandre, N., Brouillet, S. and Achaz, G. 2021. ASAP: Assemble species by automatic partitioning. Molecular Ecology Resou-rces 21(2): 609–620. https://doi.org/10.1111/1755-0998.13281
Rambaut, A. 2010. FigTree v1.4.3., Accessed on July 29, 2023.
Ramesh, V., Vijayakumar, S.P., Gopalakrishna, T., Jayarajan, A. and Shanker, K. 2020. Determining levels of cryptic diversity within the endemic frog genera, Indirana and Walkerana, of the Western Ghats, India. PLoS ONE 15(9): e0237431. https://doi. org/10.1371/journal.pone.0237431
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. and Huelsen-beck, J.P. 2012. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/ sysbio/sys029
Rosa, D. 1888. Viaggio di Leonardo Fea in Birmanica e regioni vicine, V-Preichetidi. Annali Del Museo Civico Di Storia Naturale, Giacomo Doria 6: 155–167.
Sattler, T., Bontadina, F., Hirzel, A.H. and Arlettaz, R. 2007. Ecological niche modelling of two cryptic bat species calls for a reassessment of their conservation status. Journal of Applied Ecology 44(6): 1188–1199. https://doi.org/10.1111/j.1365-2664.2007. 01328.x
Shekhovtsov, S.V, Golovanova, E.V and Peltek, S.E. 2013. Cryptic diversity within the Nordenskiold’s earthworm, Eisenia nor-denskioldi subsp. nordenskioldi (Lumbricidae, Annelida). European Journal of Soil Biology 58: 13–18.
Shen, H.P. and Chang, C.H. 2025. A new earthworm species of the genus Amynthas (Clitellata: Megascolecidae) from northern Taiwan, false synonymy between Amynthas corticis (Kinberg, 1867) and Amynthas sheni (Chen, 1935) and other taxonomic issues relating to A. corticis. Zootaxa, 5589(1): 112–126. https://doi: 10.11646/zootaxa.5589.1.10. PMID: 40173788.
Sims, R.W. and Easton, E.G. 1972. A numerical revision of the earthworm genus Pheretima auct. (Megascolecidae: Oligo-chaeta) with the recognition of new genera and an appendix on the earthworms collected by the Royal Society North Borneo Expedition. Biological Journal of the Linnean Society 4(3): 169–268. https://doi.org/10.1111/j.1095-8312.1972.tb00694.x
Singh, J., Schädler, M., Demetrio, W., Brown, G.G. and Eisen-hauer, N. 2019. Climate change effects on earthworms - a review. Soil Organisms 91(3): 114–138. https://doi.org/10. 25674/ so91iss3pp114
Strong, E.E., Gargominy, O., Ponder, W.F. and Bouchet, P. 2008. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595(1): 149–166. https://doi.org/10. 1007/ s10750-007-9012-6
Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J. and Rambaut, A. 2018. Bayesian phylogenetic and phylo-dynamic data integration using BEAST 1.10. Virus Evolution 4(1): 1–5. https://doi.org/10.1093/ve/vey016
Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22(22): 4673–4680.
Zhang, J., Kapli, P., Pavlidis, P. and Stamatakis, A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29(22): 2869–2876. https://doi.org/ 10.1093/bioinformatics/btt499
Downloads
Published
How to Cite
License
Chulalongkorn University. All rights reserved. No part of this publication may be reproduced, translated, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher




