Encapsulation of Curcumin by Spray Drying Using the Combination of Tween 80 and Chitosan
Main Article Content
Abstract
This study investigated the effect of the combination of Tween 80 and Chitosan (1/0, 1/1, 1/2, 1/3, and 0/1 (%w/w)) as encapsulated agents in the encapsulation of curcumin using spray drying. Viscosity, solid content of feed emulsion, process yield, physicochemical properties (water activity, moisture content, solubility, color, curcumin concentration, encapsulation efficiency (EE) and microstructure by SEM) and antioxidant activity of the encapsulated powder were analyzed. It was found that the viscosity of curcumin feed emulsion was increased (43.30-78.65 cP) with the elevation of chitosan concentration. The presence of Tween 80 and chitosan improved the encapsulation efficiency of curcumin in microcapsule. However, the increasing level of chitosan reduced process yield (41.17-33.02%) and antioxidant activity in term of DPPH (about 15%) but FRAP and color parameter (L*, a* and b*) are not significantly different as well as it increased the wrinkled microstructure of powders. Without Tween 80, most powders were in a clump, agglomerated and irregular shape. The encapsulated powder sample with a combination of Tween 80 and chitosan at the ratio of 1:1(%w/w) demonstrated the highest EE (57.43%) and antioxidant activity by DPPH and FRAP method (49.82, 17.12 mM TE/g, respectively). Overall, the combination of Tween 80 and chitosan as encapsulation agents showed increasing desirable properties of encapsulation efficiency of curcumin in the microcapsule.
Article Details
Copyrights of all articles in the Journal of Food Technology available in print or online are owned by Siam University and protected by law.
References
Xu, X. Y., Meng, X., Li, S., Gan, R., Li, Y., and Li, H-B. (2018). Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients. 10(10): 1553 -1596. doi:10.3390/nu10101553
Ahmed, K., Li, Y., McClements, D. J., and Xiao, H. (2012). Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. Food Chemistry. 132(2): 799–807. doi:10.1016/j.foodchem.2011.11.039
Ballesteros, L. F., Ramirez, M.J., Orrego, C.E, Teixeira, J.A., and Mussatto, S. I. (2017). Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry. 237: 623–631. doi:10.1016/j.foodchem.2017.05.142
Shishir, M. R. I., and Chen, W. (2017). Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology. 65: 49–67. doi:10.1016/j.tifs.2017.05.00
Li, J., Hwang, I.C., Chen, X., and Park, H. J. (2016). Effects of chitosan coating on curcumin loaded nano-emulsion: Study on stability and in vitro digestibility. Food Hydrocolloids. 60: 138–147. doi:10.1016/j.foodhyd.2016.03.016
O’Toole, M.G., Henderson, R. M., Soucy, P. A., Fasciotto, B. H., Hoblitzell, P. J., Keynton, R. S., Ehringer, W. D., and Gobin, A. S. (2012). Curcumin encapsulation in submicrometer spray-dried chitosan/tween 20 particles. Biomacromolecules. 13: 2309–2314. doi:10.1021/bm300564v
Deng, L., Kang, X., Liu, Y., Feng, F., and Zhang, H. (2017). Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chemistry. 231: 70–77. doi:10.1016/j.foodchem.2017.03.027
McCements, D. J., and Decker, E. (2018). Interfacial antioxidants: A review of natural and synthetic emulsifiers and coemulsifiers that can inhibit lipid oxidation. Journal of Agricultural and Food Chemistry. 66: 20–35. doi:10.1021/acs.jafc.7b05066
Kharat, M., Du, Z., Zhang, G., and McClements, D. J. (2017). Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. Journal of Agricultural and Food Chemistry. 65: 1525–1532. doi:10.1021/acs.jafc.6b04815
Dantas, D., Pasquali, M. A., Cavalcanti-Mata, M., Duarte, M. E., and Lisboa, H. M. (2018). Influence of spray drying conditions on the properties of avocado powder drink. Food Chemistry. 266: 284–291. doi:10.1016/j.foodchem.2018.06.016
AOAC. (2016) Official methods of analysis of AOAC International (20th ed). AOAC International, Rockville, Maryland, USA.
Martins, R. M., Pereira, S. V., Siqueira, S., Salomão, W. F., and Freitas, L. A. P. (2013). Curcuminoid content and antioxidant activity in spray dried microparticles containing turmeric extract. Food Research International. 50: 657–663. doi:10.1016/j.foodres.2011.06.030
Ahmed, M., Akter, M. S., Lee, J. C., and Eun, J. B. (2010). Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT-Food Science & Technology. 43: 1307–1312. doi:10.1016/j.lwt.2010.05.014
Laokuldilok, N., Thakeow, P., Kopermsub, P., and Utama-Ang, N. (2015). Optimisation of microencapsulation of turmeric extract for masking flavour. Food Chemisty. 194: 695–704. doi:10.1016/j.foodchem.2015.07.150
Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und Technologie. 28: 25–30.
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., and Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis. 19: 669–675. doi:10.1016/j.jfca.2006.01.003
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science. 31: 603–632. doi:10.1016/j.progpolymsci.2006.06.001
El-Hefian, E. A., Khan. R. A., and Yahaya A. H. (2008). Study of the parameters affecting the viscosity of chitosan solution. Journal Chemical Society of Pakistan.30(4): 529–531
Li, Y., Ai, L., Yokoyama, W., Shoemaker, C. F., Wei, D., Ma, J., and Zhong, F. (2013). Properties of chitosan-microencapsulated orange oil prepared by spray-drying and its stability to detergents. Journal of Agricultural and Food Chemistry. 61: 3311–3319. doi:10.1021/jf305074q
Klaypradit, W., and Huang, Y. W. (2008). Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT - Food Science and Technology. 41:1133–1139. doi:10.1016/j.lwt.2007.06.014
Chuacharoen, T., Prasongsuk, S., and Sabliov, C. M. (2019). Effect of surfactant concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial utilization. Molecules. 24: 2744-2756. doi:10.3390/molecules24152744
Akolade, J. O., Oloyede, H. O. B., and Onyenekwe, P. C. (2017). Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. Journal of Functional Foods. 35: 584–594. doi:10.1016/j.jff.2017.06.023
Nuzzo, M., Millqvist-Fureby, A., Sloth, J., and Bergenstahl, B. (2015). Surface composition and morphology of particles dried individually and by spray drying. Drying Technology. 33(6): 757–767. doi:10.1080/07373937.2014.990566
Munoz-Ibanez, M., Nuzzo, M., Turchiuli, C., Bergenståhl, B., Dumoulin, E., and Millqvist-Fureby, A. (2016). The microstructure and component distribution in spray-dried emulsion particles. Food Structure. 8: 16–24. doi:10.1016/j.foostr.2016.05.001
Drapala, K. P., Auty, M. A. E., Mulvihill, D. M., and O’Mahony, J. A. (2017). Influence of emulsifier type on the spray-drying properties of model infant formula emulsions. Food Hydrocolloids. 69: 56–66. doi:10.1016/j.foodhyd.2016.12.024
Kumar, L. R. G., Chatterjee, N. S., Tejpal, C. S., Vishnu, K. V., Anas, K. K., Asha, K. K., Anandan, R., and Mathew, S. (2017). Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: Characterization and oxidative stability studies. International Journal of Biological Macromolecules. 104: 1986–1995. doi:10.1016/j.ijbiomac.2017.03.114
Normand, V., Subramaniam, A., Donnelly, J. and Bouquerand, P. E. (2013). Spray drying: Thermodynamics and operating conditions. Carbohydrate Polymers. 97: 489–495. doi:10.1016/j.carbpol.2013.04.096
Liu, W., Chen, X. D., Cheng, Z., and Selomulya, C. (2016). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of Food Engineering. 169: 189–195. doi:10.1016/j.jfoodeng.2015.08.034
Petruzzi, L., Corbo, M. R., Sinigaglia, M., and Bevilacqua, A. (2017). Microbial spoilage of foods: Fundamentals. The microbiological quality of food ed by Bevilacqua, A., Corbo, M.R., and Sinigaglia, M. Elsevier Ltd. doi:10.1016/B978-0-08-100502-6.00002-9
Boruah, B., Saikia, P. M., and Dutta, R. K. (2012). Binding and stabilization of curcumin by mixed chitosan-surfactant systems: A spectroscopic study. Journal of Photochemistry and Photobiology: A Chemistry. 245: 18–27. doi:10.1016/j.jphotochem.2012.07.004
Munoz-Ibanez, M., Azagoh, C., Dubey, B. N., Dumoulin, E., and Turchiuli, C. (2015). Changes in oil-in-water emulsion size distribution during the atomization step in spray-drying encapsulation. Journal of Food Engineering. 167: 122–132. doi:10.1016/j.jfoodeng.2015.02.008
Wu, M. H., Yan, H. H., Chen, Z. Q., and He, M. (2017). Effects of emulsifier type and environmental stress on the stability of curcumin emulsion. Journal of Dispersion Science and Technology. 38(10): 1375–1380. doi:10.1080/01932691.2016.1227713
Neves, M. I. L., Desobry-Banon, S, Perrone, I. T., Desobry, S., and Petit, J. (2019). Encapsulation of curcumin in milk powders by spray-drying: Physicochemistry, rehydration properties, and stability during storage. Powder Technology. 345: 601–607. doi:10.1016/j.powtec.2019.01.049
Schröder, J., Kleinhans, A., Serfert, Y., Drusch, S., Schuchmann, H. P., and Gaukel, V. (2012). Viscosity ratio: A key factor for control of oil drop size distribution in effervescent atomization of oil-in-water emulsions. Journal of Food Engineerig. 111: 265–271. doi:10.1016/j.jfoodeng.2012.02.023
Barzegar A. (2012). The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chemistry. 135: 1369–1376. doi:10.1016/j.foodchem.2012.05.070
Priyadarsini, K. I., Maity, D. K., Naik, G. H., Kumar, M. S., Unnikrishnan, M. K., Satav, J. G., and Mohan, H. (2003). Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biology & Medicine. 35(5): 475–484. doi:10.1016/S0891-5849(03)00325-3
Jovanovic, S. V., Steenken, S., Boone, C. W., and Simic, M. G. (1999). H-atom transfer is a preferred antioxidant mechanism of curcumin. Journal of American Chemical Society. 121: 9677–9681. doi:10.1021/ja991446m