Effect of single-factor by ultrasound-assisted extraction on antioxidant properties of extract from jiaogulan (Gynostemma pentaphyllum) leaves

Main Article Content

Pichanan Kamkayan
Kitipong Assatarakul


This study aimed to investigate the effect of single-factor by ultrasound-assisted extraction on the antioxidant properties of the extract from jiaogulan leaves. Four single-factors namely ethanol concentration (50-90% v/v), liquid to solid ratio (1:20-1:60 g/mL), extraction time (10-50 min) and amplitude (30-70%) were varied. It was found that all single-factors significantly affected antioxidant properties of the extract (p≤0.05). An increasing in antioxidant properties resulted from an increase in ethanol concentration, solid to liquid ratio, extraction time and amplitude. In addition, the best condition for jiaogulan leaves extraction were ethanol concentration of 70% v/v, solid to liquid ratio of 1:50 g/mL, extraction time of 20 min and amplitude of 40%. The extract obtained from such condition had total phenolic content, total flavonoid content and antioxidant activity with 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion reducing antioxidant power (FRAP) methods of 405.17 mg GAE/100 g dry wt., 2.59 mg QCE/100 g dry wt., 1881.07 mM trolox/100 g dry wt., and 2838.15 mM trolox/100 g dry wt., respectively. 


Download data is not yet available.

Article Details

How to Cite
Kamkayan, P., & Assatarakul, K. (2021). Effect of single-factor by ultrasound-assisted extraction on antioxidant properties of extract from jiaogulan (Gynostemma pentaphyllum) leaves. Journal of Food Technology, Siam University, 16(2), 95-108. Retrieved from https://li01.tci-thaijo.org/index.php/JFTSU/article/view/248386
บทความวิจัย (Research Articles)


อดิศักดิ์ จูมวงษ์ และ วิทวัส เกตุดี. (2563). ผลของระยะเวลาในการชงชากับคุณภาพทางกายภาพ เคมี กิจกรรมต้านอนุมูลอิสระ และ คุณภาพทางประสาทสัมผัสของชาเจียวกู่หลาน. วารสารเกษตรศาสตร์และเทคโนโลยี ปีที่1(1): 26-36.

Li, Y., Lin, W., Huang, J., Xie, Y. and Ma W. (2016). Anti-cancer effects of Gynostemma pentaphyllum (Thunb.) Makino (jiaogulan). Chinese Medicine, 11(1).

Tang, W. and Eisenbrand, G. (2011). Handbook of Chinese medicinal plants: chemistry, pharmacology and toxicology. Wiley-VCH, Weinheim, Germany

Samec, D., Valek-Zulj, L., Martinez, S., Gruz, J., Piljac, A. and Piljac-Zegarac, J. (2016). Phenolic acids significantly contribute to antioxidant potency of Gynostemma pentaphyllum aqueous and methanol extracts. Industrial Crops and Products, 84: 104-107.

Bernhoft, A. (2010). Bioactive compounds in plants-benefits and risks for man and animals: A brief review on bioactive compounds in plants. Proceedings from a Symposium Held in Norwegian Academy of Science and Letters, pp 11-17. November 13-14, 2008. Oslo. Norway.

Wang, Y.R., Xing, S.F., Lin, M., Gu, Y.L. and Piao, X.L. (2018). Determination of flavonoids from Gynostemma pentaphyllum using ultra-performance liquid chromatography with triple quadrupole tandem mass spectrometry and an evaluation of their antioxidant activity in vitro. Journal of Liquid Chromatography and Related Technologies, 41(8): 437-444.

Kebede, M. and Admassu, S. (2019). Application of antioxidants in food processing industry: options to improve the extraction yields and market value of natural products. Advances in Food Technology and Nutritional Sciences, 5(2): 38-49.

Kumar, S. (2014). The importance of antioxidant and their role in pharmaceutical science-A review. Asian Journal of Research in Chemistry and Pharmaceutical Sciences, 1(1): 27-44.

Belwal, T., et al. (2018). A critical analysis of extraction techniques used for botanicals: trends, priorities, industrial uses and optimization strategies. Trends in Analytical Chemistry, 100: 82-102.

Rodrigues, S. and Pinto, G.A.S. (2007). Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder. Journal of Food Engineering. 80: 869-872.

วรัญญา วงศ์วานิช และ กิตติชัย บรรจง. (2559). ปัจจัยที่มีผลต่อการสกัดน้ำมันเมล็ดองุ่นด้วยวิธีการแช่และการใช้คลื่นเสียงความถี่สูงช่วยสกัด. วารสารเกษตรพระจอมเกล้า, 34(3): 9-21.

Muthukumaran, S., Kentish, S.E., Stevens, G.W. and Ashokkumar, M. (2006). Application of ultrasound in membrane separation processes: A review. Reviews in Chemical Engineering, 22: 155-194.

Slinkard, K. and Singleton, V.L. (1997). Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49-55.

Maisuthisakul, P., Suttajit, M. and Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chemistry, 100: 1409-1418.

Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28: 25-30.

Benzie, I.F.F. and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239: 70-76.

Tabaraki, R. and Nateghi, A. (2011). Optimization of ultrasonic-assisted extraction of natural antioxidants from rice bran using response surface methodology. Ultrasonics Sonochemistry, 18(6): 1279-1286.

Yang, L., Cao, Y.L., Jiang, J.G., Lin, Q.S., Chen, J. and Zhu, L. (2010). Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara Engl. Journal of Separation Science, 33(9): 1349-1355.

Chan, S.W., Lee, C.Y., Yap, C. F., Wan Aida, W.M. and Ho, C.W. (2009). Optimisation of extraction conditions for phenolic compounds from limau purut (Citrus hystrix) peels. International Food Research Journal, 16: 203-213.

Dzah, C.S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G. and Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35: 100547.

Rajha, H.N., Darra, N.E., Hobaika, Z., Boussetta, N., Vorobiev, E., Maroun, R.G. and Louka, N. (2014). Extraction of total phenolic compounds, flavonoids, anthocyanins and tannins from grape byproducts by response surface methodology. Influence of solid-liquid ratio, particle size, time, temperature and solvent mixtures on the optimization process. Food and Nutrition Sciences. 5: 397-409.

Nguang, S.L., Yeong, Y.L., Pang, S.F. and Gimbun, J. (2017). Ultrasonic assisted extraction on phenolic and flavonoid content from Phyllanthus niruri plant. Indian Journal of Science and Technology, 10(2): 1-5.

Xu, D.P., Zheng, J., Zhou, Y., Li, Y., Li, S. and Li, H.B. (2017). Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatu: optimization and comparison with conventional methods. Food Chemistry, 217: 552-559.

Santos, D., Vardanega, R. and De Almeida, M.A. (2014). Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacognosy Reviews, 8(16): 88-95.

Anaya-Esparza, L.M., Ramos-Aguirre, D., Zamora-Gasga, V.M., Yahia, E. and Montalvo-González, E. (2018). Optimization of ultrasonic-assisted extraction of phenolic compounds from Justicia spicigera leaves. Food Science and Biotechnology, 27(4): 1093-1102.

Wang, J., Sun, B., Cao, Y., Tian, Y. and Li, X. (2008). Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chemistry, 106(2): 804-810.

Goula, A.M. (2013). Ultrasound-assisted extraction of pomegranate seed oil-Kinetic modeling. Journal of Food Engineering, 117(4): 492-498.

Muangrat, R., Pongsirikul, I. and Blanco, P.H. (2017). Ultrasound assisted extraction of anthocyanins and total phenolic compounds from dried cob of purple waxy corn using response surface methodology. Journal of Food Processing and Preservation, 42(2).

Al-dhabi, N.A., Ponmurugan, K. and Maran, P. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrasonics Sonochemistry, 34: 206-213.