THE CORRELATION OF KINEMATIC VISCOSITY AND MOLECULAR MASS OF FATTY ACID METHYL ESTER WITH GIBBS ENERGY ADDITIVITY METHOD
Keywords:
Fatty acid methyl ester, Density, Molecular mass, BiodieselAbstract
Kinematic viscosity of biodiesel is important physical properties and directly effect on the injection process of the engine. It changes with the chemical composition of fatty acid and temperature. This research aims to correlate between kinematic viscosity and molecular mass of fatty acid methyl ester by Gibbs energy additivity method (GEAM), to use a simple equation for estimating kinetic viscosity. Accordingly, it was found that kinematic viscosity is highly linear relationship to molecular mass. Hence, kinematic viscosity of both fatty acid methyl ester and biodiesels can be estimated by using the same equation in temperature range of 278.15- 373.15 K. The AAD are still accepted. Therefore, the equation is very useful for the rapid application of kinematic viscosity, timesaving and cost reduction of experimental.
References
Aransiola, E. F., Ojumu, T. V., Oyekola, O. O., Madzimbamuto, T. F., & Ikhu-Omoregbe, D. I. O. (2014). A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy. 61, 276-297.
Ashraful, A. M., Masjuki, H. H., Kalam, M. A., Fattah, I. M. R., Imtenan, S., Shahir, S. A., & Mobarak, H. M. (2014). Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review. Energy Conversion and Management. 80, 202–228.
Atabani, A. E., A.S.Silitonga, H.C.Ong, T.M.I.Mahlia, H.H.Masjuki, Badruddin, I. A., & H.Fayaz. (2013). Non-edible vegetable oils:Acritical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engineperformance and emissions production. Renewable and Sustainable Energy Reviews. 18, 211–245.
Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2010). High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews. 14(7), 1999-2008. doi:10.1016/j.rser.2010.03.020
Carlos A. Nogueira, J., Feitosa, F. X., Fabiano A. N. Fernandes, Santiago, R. l. S., & Sant’Ana, H. B. d. (2010). Densities and Viscosities of Binary Mixtures of Babassu Biodiesel + Cotton Seed or Soybean Biodiesel at Different Temperatures. Journal of Chemical & Engineering Data. 55, 5305–5310.
Feitosa, F. X., Rodrigues, M. d. L., Veloso, C. B., Ce´lio L. Cavalcante, J., Albuquerque, M. n. C. G., & Sant’Ana, H. B. d. (2010). Viscosities and Densities of Binary Mixtures of Coconut + Colza and Coconut + Soybean Biodiesel at Various
Temperatures. Journal of Chemical & Engineering Data. 55(3909–3914).
Felipe, L., & Ramı´rez-Verduzco. (2013). Density and viscosity of biodiesel as a function of temperature: Empirical models. Renewable and Sustainable Energy Reviews. 19, 652– 665.
Knothe, G., & Steidley, K. R. (2007). Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures. Fuel. 86, 2560–2567. doi:10.1016/j.fuel.2007.02.006
Knothe, G., & Steidley, K. R. ( 2011). Kinematic viscosity of fatty acid methyl esters: Prediction, calculated viscosity contribution of esters with unavailable data, and carbon–oxygen equivalents. Fuel. 90, 3217–3224.
Krisnangkura, K., Aryusuk, K., Phankosol, S., & Lilitchan, S. (2016). Energy Additivity Approaches to QSPR Modeling in Estimation of Dynamic Viscosity of Fatty Acid Methyl Ester and Biodiesel. Journal of the American Oil Chemists’
Society. 1407–1414. doi:10.1007/s11746-016-2874-x
Krisnangkura, K., Sansa-ard, C., Aryusuk, K., Lilitchan, S., & Kittiratanapiboon, K. (2010). An empirical approach for predicting kinematic viscosities of biodiesel blends. Fuel. 89, 2775–2780.
Krisnangkura, K., Yimsuwan, T., & Pairintra, R. (2006). An empirical approach in predicting biodiesel viscosity at various temperatures. Fuel. 85, 107–113.
Phankosol, S., Sudaprasert, K., Lilitchan, S., Aryusuk, K., & Krisnangkura, K. (2014a). Estimation of Density of Biodiesel. Energy and Fuels. 28, 4633−4641.
Phankosol, S., Sudaprasert, K., Lilitchan, S., Aryusuk, K., & Krisnangkura, K. (2014b). Estimation of surface tension of fatty acid methyl ester and biodiesel at different temperatures. Fuel. 126, 162–168.
Phankosol, S., Sudaprasert, K., Lilitchan, S., Aryusuk, K., & Krisnangkura, K. (2015). An Empirical Equation for Estimation of Kinematic Viscosity of Fatty Acid Methyl Esters and Biodiesel. Journal of the American Oil Chemists’ Society. 92(7), 1051-1061.
Pratas, M. J., Freitas, S., Oliveira, M. B., Monteiro, S. l. C., Lima, A. l. S., & Coutinho, J. o. A. P. (2011). Densities and Viscosities of Minority Fatty Acid Methyl and Ethyl Esters Present in Biodiesel. Journal of Chemical & Engineering Data.
56(5), 2175-2180. doi:10.1021/je1012235
Pratas, M. J., Freitas, S., Oliveira, M. B., Monteiro, S. l. C., Lima, A. S., & Coutinho, J. o. A. P. (2010). Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters. Journal of Chemical & Engineering Data. 55, 3983–3990.
Ramírez-Verduzco, L. F., Rodríguez-Rodríguez, J. E., & Jaramillo-Jacob, A. d. R. (2012). Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition.
Fuel. 91,102–111.
Yuan, W., Hansen, A. C., & Zhang, Q. (2009). Predicting the temperature dependent viscosity of biodiesel fuels. Fuel. 88, 1120–1126.
Downloads
Published
Issue
Section
License
โปรดกรอกเอกสารและลงนาม "หนังสือรับรองให้ตีพิมพ์บทความในวารสารวิจัยมหาวิทยาลัยราชภัฏพระนคร สาขาวิทยาศาสตร์และเทคโนโลยี" ก่อนการตีพิมพ์