สารพิษทีซีจำเพาะต่อสัตว์เลี้ยงลูกด้วยนมที่พบในแบคทีเรีย Yersinia pestis และ Yersinia pseudotuberculosis
Main Article Content
บทคัดย่อ
กลุ่มพิษขนาดใหญ่ (สารพิษทีซี) เป็นกลุ่มพิษที่มีโครงสร้างเป็นโปรตีนขนาดใหญ่ประกอบไปด้วยโครงสร้างขนาดย่อยสามส่วน โดยมีหลักการทำงานคล้ายกับเข็มฉีดยา มีช่องผ่านภายในหน่วยย่อยโปรตีน A และมีหน่วยโปรตีนย่อย B กับ C ประกอบกันอยู่ด้านบนของช่องผ่านภายในหน่วยย่อยโปรตีน A สารพิษทีซีสามารถพบได้ในแบคทีเรียก่อโรคในแมลงหลายชนิด โดยยังคงโครงสร้างและหลักการทำงานพื้นฐานที่พบครั้งแรกใน Photorhabdus luminescens ปัจจุบันได้มีข้อมูลจำนวนหนึ่งที่บ่งบอกถึงสารพิษทีซีลักษณะแปลกแยกออกไปใน Yersinia pestis และ Yersinia pseudotuberculosis สารพิษทีซีลักษณะคล้ายกลุ่มฆ่าแมลงเหล่านี้แสดงฤทธิ์ฆ่าแมลงที่ลดลงและฤทธิ์จำเพาะต่อสัตว์เลี้ยงลูกด้วยนม โดยเฉพาะสารพิษทีซีใน Y. pestis ที่ต่างออกไปอย่างชัดเจนเช่นถูกกระตุ้นการแสดงออกเป็นพิเศษในพาหะหมัด พิษที่ไม่มีฤทธิ์ต่อหมัด และความสามารถในการหยุดยั้งฟาโกไซโตซิสทันทีหลังจากการติดเชื้อ หากสามารถสรุปได้ว่าสารพิษทีซีใน Y. pestis ถูกคัดหลั่งโดยไม่พึ่ง T3SS (type III secretion system) ข้อมูลที่มีอยู่ในปัจจุบันเสนอว่าสารพิษทีซีใน Y. pestis อาจจะมีหน้าที่ที่ช่วยยับยั้งฟาโกไซโตซิสในช่วงปรับอุณหภูมิของ T3SS
Article Details
เอกสารอ้างอิง
do Vale A, Cabanes D, Sousa S. Bacterial toxins as pathogen weapons against phagocytes. Front Microbiol 2016; 7.
Moayeri M, Welch RA. 6.10 Bacteria Exotoxins. In: Williams P, Ketley J, Salmond G, eds. Methods in microbiology. Cambridge MA: Academic Press, 1998: 287-300.
Wilson BA, Ho M. 1 - Evolutionary aspects of toxin-producing bacteria. The comprehensive sourcebook of bacterial protein toxins. 4th ed. Cambridge MA: Academic Press, 2015: 3-39.
ffrench-Constant R, Waterfield N. An ABC guide to the bacterial toxin complexes. In: Laskin AI, Bennett JW, Gadd GM, et al., eds. Advances in applied microbiology. Cambridge MA: Academic Press, 2005: 58: 169-83.
Bowen D, Rocheleau TA, Blackburn M, et al. Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 1998; 280: 2129-32.
Hurst MRH, Glare TR, Jackson TA, et al. Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J Bacteriol 2000; 182: 5127-38.
Hares MC, Hinchliffe SJ, Strong PCR, et al. The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells. Microbiology 2008; 154: 3503-17.
Spinner JL, Carmody AB, Jarrett CO, et al. Role of Yersinia pestis toxin complex family proteins in resistance to phagocytosis by polymorphonuclear leukocytes. Infect Immun 2013; 81: 4041-52.
Vadyvaloo V, Jarrett C, Sturdevant DE, et al. Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis. PLoS Pathog 2010; 6: e1000783.
Pinheiro VB, Ellar DJ. Expression and insecticidal activity of Yersinia pseudotuberculosis and Photorhabdus luminescens toxin complex proteins. Cell Microbiol 2007; 9: 2372-80.
Bresolin G, Morgan JAW, Ilgen D, et al. Low temperature-induced insecticidal activity of Yersinia enterocolitica. Mol Microbiol 2005; 59: 503-12.
Landsberg MJ, Jones SA, Rothnagel R, et al. 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Proc Natl Acad Sci U S A 2011; 108, 20544-9.
Meusch D, Gatsogiannis C, Efremov RG, et al. Mechanism of Tc toxin action revealed in molecular detail. Nature 2014; 508: 61-5.
Gatsogiannis C, Lang AE, Meusch D, et al. A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 2013; 495: 520-3.
Liu D, Burton S, Glancy T, et al. Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nat Biotechnol 2003; 21: 1222-8.
Busby JN, Panjikar S, Landsberg MJ, et al. The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature 2013; 501: 547-50.
Gatsogiannis C, Merino F, Prumbaum D, et al. Membrane insertion of a Tc toxin in near-atomic detail. Nat Struct Mol Biol 2016; 23: 884-90.
Lang AE, Schmidt G, Schlosser A, et al. Photorhabdus luminescens toxins ADP-ribosylate actin and RhoA to force actin clustering. Science 2010; 327: 1139-42.
Gatsogiannis C, Merino F, Roderer D, et al. Tc toxin activation requires unfolding and refolding of a β-propeller. Nature 2018; 563: 209-13.
Chen WJ, Hsieh FC, Hsu FC, et al. Characterization of an insecticidal toxin and pathogenicity of Pseudomonas taiwanensis against insects. PLoS Pathog 2014; 10: e1004288.
Rangel LI, Henkels MD, Shaffer BT, et al. Characterization of toxin complex gene clusters and insect toxicity of bacteria representing four subgroups of Pseudomonas fluorescens. PLoS One 2016; 11: e0161120.
Chaston JM, Suen G, Tucker SL, et al. The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: Convergent lifestyles from divergent genomes. PLoS One 2011; 6: e27909.
Waterfield NR, Bowen DJ, Fetherston JD, et al. The tc genes of Photorhabdus: a growing family. Trends Microbiol 2001; 9: 185-91.
Hurst MRH, Jones SM, Tan B, et al. Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiol Lett 2007; 275: 160-7.
Leidreiter F, Roderer D, Meusch D, et al. Common architecture of Tc toxins from human and insect pathogenic bacteria. Sci Adv 2019; 5: eaax6497.
Sheets JJ, Hey TD, Fencil KJ, et al. Insecticidal toxin complex proteins from Xenorhabdus nematophilus: Structure and pore formation. J Biol Chem 2011; 286: 22742-9.
Lee SC, Stoilova-Mcphie S, Baxter L, et al. Structural characterization of the Insecticidal toxin XptA1, reveals a 1.15 MDa tetramer with a cage-like structure. J Mol Biol 2007; 336: 1558-68.
Starke M, Richter M, Fuchs TM, et al. The insecticidal toxin genes of Yersinia enterocolitica are activated by the thermolabile LTTR-like regulator TcaR2 at low temperatures. Mol Microbiol 2013; 89: 596-611.
Spinner JL, Jarrett CO, LaRock DL, et al. Yersinia pestis insecticidal-like toxin complex (Tc) family proteins: characterization of expression, subcellular localization, and potential role in infection of the flea vector. BMC Microbiol 2012; 12: 296.
Sergeant M, Jarret P, Ousley M, et al. Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 2003; 69: 3344-9.
Waterfield N, Hares M, Yang G, et al. Potentiation and cellular phenotypes of the insecticidal toxin complexes of Photorhabdus bacteria. Cell Microbiol 2004; 7: 373-82.
Duchaud E, Rusniok C, Frangeul L, et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 2003; 21: 1307-13.
Piper SJ, Brillault L, Rothnagel R, et al. Cryo-EM structure of the pore-forming A subunit from the Yersinia entomophaga ABC toxin. Nat Commun 2019; 10: 1952.
Busby JN, Landsberg MJ, Simpson RM, et al. Structural analysis of Chi1 chitinase from Yen-Tc: the multisubunit insecticidal ABC toxin complex of Yersinia entomophaga. J Mol Biol 2012; 415: 359-71.
Tang KFJ, Lightner DV. Homologues of insecticidal toxin complex genes within a genomic island in the marine bacterium Vibrio parahaemolyticus. FEMS Microbiol Lett 2014; 361: 34-42.
Tennant SM, Skinner NA, Joe A, et al. Homologues of insecticidal toxin complex genes in Yersinia enterocolitica biotype 1A and their contribution to virulence. Infect Immun 2005; 73: 6860-7.
Acthman M, Zurth K, Morelli G, et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 1999; 96: 14043-8.
Chain PSG, Carniel E, Larimer FW, et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 2004; 101: 13826-31.
Hinchliffe SJ, Isherwood KE, Stabler RA, et al. Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res 2003; 13: 2018-29.
Gendlina I, Held KG, Bartra SS, et al. Identification and type III-dependent secretion of the Yersinia pestis insecticidal-like proteins. Molec Microbiol 2007; 64: 1214-27.
Erickson DL, Waterfield NR, Vadyvaloo V, et al. Acute oral toxicity of Yersinia pseudotuberculosis to fleas: implications for the evolution of vector-borne transmission of plague. Cell Molec 2007; 9: 2658-66.
Eisen RJ, Dennis DT, Gage KL. The role of early-phase transmission in the spread of Yersinia pestis. J Med Entomol 2015; 52: 1183-92.
Fukuto HS, Svetlanov A, Palmer LE, et al. Global gene expression profiling of Yersinia pestis replication inside macrophages reveals the roles of a putative-stress induced operon in regulating type III secretion and intracellular cell division. Infect Immun 2010; 78: 3700-15.
Spinner JL, Hinnebusch BJ. The life stage of Yersinia pestis in the flea vector confers increased resistance to phagocytosis and killing by murine polymorphonuclear leukocytes. Adv Exp Med Biol 2012; 954: 159-63.