บทบาทของธาตุเหล็กฮีมต่อการเกิดมะเร็งลำไส้ใหญ่ที่มีการกลายพันธุ์ของยีน APC และกลยุทธ์ทางเลือกในการป้องกันมะเร็งลำไส้ใหญ่
Main Article Content
บทคัดย่อ
ในปี 2020 มะเร็งลำไส้ใหญ่และทวารหนักเป็นมะเร็งที่พบมากเป็นอันดับสามและเป็นสาเหตุอันดับสองของการเสียชีวิตจากโรคมะเร็งทั่วโลก การกลายพันธุ์ของยีน adenomatous polyposis coli (APC) เป็นหนึ่งในปัจจัยของการเกิดมะเร็งผ่านการรบกวนสัญญาณ Wnt โดยธาตุเหล็กฮีม (heme iron) ซึ่งเป็นส่วนประกอบหลักของเนื้อแดงสามารถกระตุ้นภาวะเครียดทางออกซิเดชันและการอักเสบเรื้อรัง ปัจจัยทั้งสองเหนี่ยวนำให้เกิดการส่งสัญญาณ Wnt และส่งผลให้เซลล์มีการเจริญเติบโตผิดปกติ อย่างไรก็ตาม ความเป็นพิษต่อเซลล์ที่เกิดจากธาตุเหล็กฮีมไม่ส่งผลต่อเซลล์ที่มีการกลายพันธุ์ของยีน APC ทำให้ความเสี่ยงของการเกิดมะเร็งของเซลล์กลายพันธุ์เพิ่มขึ้น กลไกที่เกิดขึ้นได้แก่ การเปลี่ยนแปลงทางชีวภาพของสารจากปฏิกิริยาออกซิเดชันของลิพิดที่มีประสิทธิภาพมากขึ้น การเพิ่มการสังเคราะห์เอนไซม์ต้านอนุมูลอิสระผ่าน nuclear factor erythroid 2-related factor 2 (Nrf2) และการลดการแสดงออกของ heme oxygenase-1 กระตุ้นการอักเสบ นอกจากนี้ ธาตุเหล็กฮีมยังรบกวนสมดุลของจุลินทรีย์ในลำไส้ ทำให้เกิดการอักเสบเรื้อรังร่วมกับการเติบโตของเซลล์ที่เพิ่มมากขึ้น อนึ่ง เซลล์ที่มีการกลายพันธุ์ของยีน APC สามารถลดการตายของเซลล์โดยผ่านการรบกวนสัญญาณการอักเสบนิวเคลียร์แฟคเตอร์-แคปปาบี (nuclear factor kappa B) ด้วยเหตุนี้ เพื่อลดความเสี่ยงของการเกิดมะเร็งลำไส้ใหญ่โดยเฉพาะผู้ที่มีการกลายพันธุ์ของยีน APC ควรจำกัดการบริโภคอาหารที่อุดมด้วยธาตุเหล็กฮีม และอาจพิจารณาเพิ่มการบริโภคผลิตภัณฑ์อาหารเสริมที่ให้ประโยชน์ในการต้านอนุมูลอิสระ ต้านการอักเสบ และการปรับสมดุลของจุลินทรีย์ในลำไส้
Article Details
เอกสารอ้างอิง
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71: 209-49.
Wargovich MJ, Brown VR, Morris J. Aberrant crypt foci: the case for inclusion as a biomarker for colon cancer. Cancers 2010; 2: 1705-16.
Mori H, Yamada Y, Kuno T, et al. Aberrant crypt foci and beta-catenin accumulated crypts; significance and roles for colorectal carcinogenesis. Mutat Res 2004; 566: 191-08.
Yamagishi H, Kuroda H, Imai Y, et al. Molecular pathogenesis of sporadic colorectal cancers. Chin J Cancer 2016; 35: 4.
Béroud C, Soussi T. APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 1996; 24: 121-4.
Parker TW, Neufeld KL. APC controls Wnt-induced β-catenin destruction complex recruitment in human colonocytes. Sci Rep 2020; 10: 2957.
Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst 2017; 109.
Catalano T, D'Amico E, Moscatello C, et al. Oxidative distress induces Wnt/β-Catenin pathway modulation in colorectal cancer cells: perspectives on APC retained functions. Cancers (Basel) 2021; 13.
Vallée A, Lecarpentier Y, Vallée J-N. Targeting the canonical WNT/β-Catenin pathway in cancer treatment using non-steroidal anti-inflammatory drugs. Cells 2019; 8: 726.
Farvid MS, Sidahmed E, Spence ND, et al. Consumption of red meat and processed meat and cancer incidence: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 2021; 36: 937-51.
Gilsing AMJ, Fransen F, de Kok TM, et al. Dietary heme iron and the risk of colorectal cancer with specific mutations in KRAS and APC. Carcinogenesis 2013; 34: 2757-66.
Gay LJ, Mitrou PN, Keen J, et al. Dietary, lifestyle and clinicopathological factors associated with APC mutations and promoter methylation in colorectal cancers from the EPIC-Norfolk study. J Pathol 2012; 228: 405-15.
Diergaarde B, van Geloof WL, van Muijen GN, et al. Dietary factors and the occurrence of truncating APC mutations in sporadic colon carcinomas: a Dutch population-based study. Carcinogenesis 2003; 24: 283-90.
Pierre F, Taché S, Corpet DE, et al. Beef meat and blood sausage promote the formation of azoxymethane-induced mucin-depleted foci and aberrant crypt foci in rat colons. J Nutr 2004; 134: 2711-6.
Kowalczyk M, Orłowski M, Siermontowski P, et al. Occurrence of colorectal aberrant crypt foci depending on age and dietary patterns of patients. BMC Cancer 2018; 18: 213.
Bastide NM, Pierre FHF, Corpet DE. Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila) 2011; 4: 177-84.
Ishikawa S, Tamaki S, Ohata M, et al. Heme induces DNA damage and hyperproliferation of colonic epithelial cells via hydrogen peroxide produced by heme oxygenase: a possible mechanism of heme-induced colon cancer. Mol Nutr Food Res 2010; 54: 1182-91.
Constante M, Fragoso G, Calvé A, et al. Dietary heme induces gut dysbiosis, aggravates colitis, and potentiates the development of adenomas in mice. Front Microbiol 2017; 8: 1809.
Li DP, Cui M, Tan F, et al. High red meat intake exacerbates dextran sulfate-induced colitis by altering gut microbiota in mice. Front Nutr 2021; 8: 646819.
Martin OCB, Olier M, Ellero-Simatos S, et al. Haem iron reshapes colonic luminal environment: impact on mucosal homeostasis and microbiome through aldehyde formation. Microbiome 2019; 7: 72.
Abu-Ghazaleh N, Chua WJ, Gopalan V. Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol 2021; 36: 75-88.
Yang J, Yu J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell 2018; 9: 474-87.
World Cancer Research Fund/American Institute for Cancer Research. Recommend-ations and public health and policy implications. 2018: 29-31.
Wang X, O'Connell K, Jeon J, et al. Combined effect of modifiable and non-modifiable risk factors for colorectal cancer risk in a pooled analysis of 11 population-based studies. BMJ Open Gastroenterol 2019; 6: e000339.
Ogino S, Goel A. Molecular classification and correlates in colorectal cancer. J Mol Diagn 2008; 10: 13-27.
Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010; 138: 2059-72.
Mah AT, Yan KS, Kuo CJ. Wnt pathway regulation of intestinal stem cells. J Physiol 2016; 594: 4837-47.
Swoboda J, Mittelsdorf P, Chen Y, et al. Intestinal Wnt in the transition from physiology to oncology. World J Clin Oncol 2022; 13: 168-85.
Yamanishi K, Fiedler M, Terawaki S-i, et al. A direct heterotypic interaction between the DIX domains of Dishevelled and Axin mediates signaling to β-catenin. Sci Signal 2019; 12: eaaw5505.
Rennoll S, Yochum G. Regulation of MYC gene expression by aberrant Wnt/β-catenin signaling in colorectal cancer. World J Biol Chem 2015; 6: 290-300.
Utsunomiya T, Doki Y, Takemoto H, et al. Correlation of Beta-Catenin and Cyclin D1 Expression in Colon Cancers. Oncology 2001; 61: 226-33.
Clapper ML, Chang WL, Cooper HS. Dysplastic aberrant crypt foci: biomarkers of early colorectal neoplasia and response to preventive intervention. Cancer Prev Res (Phila) 2020; 13: 229-40.
Smith AJ, Stern HS, Penner M, et al. Somatic APC and K-ras codon 12 mutations in aberrant crypt foci from human colons. Cancer Res 1994; 54: 5527-30.
Yuan P, Sun MH, Zhang JS, et al. APC and K-ras gene mutation in aberrant crypt foci of human colon. World J Gastroenterol 2001; 7: 352-6.
Femia AP, Dolara P, Giannini A, et al. Frequent mutation of Apc gene in rat colon tumors and mucin-depleted foci, preneoplastic lesions in experimental colon carcinogenesis. Cancer Res 2007; 67: 445-9.
Takayama T, Ohi M, Hayashi T, et al. Analysis of K-ras, APC, and beta-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenter-ology 2001; 121: 599-611.
Yamada Y, Mori H. Pre-cancerous lesions for colorectal cancers in rodents: a new concept. Carcinogenesis 2003; 24: 1015-9.
Dow LE, O'Rourke KP, Simon J, et al. Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell 2015; 161: 1539-52.
Zhao H, Ming T, Tang S, et al. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 2022; 21: 144.
Malcomson FC, Willis ND, McCallum I, et al. Diet-associated inflammation modulates inflammation and WNT signaling in the rectal mucosa, and the response to supplementation with dietary fiber. Cancer Prev Res (Phila) 2021; 14: 337-46.
Turesky RJ. Mechanistic evidence for red meat and processed meat intake and cancer risk: a follow-up on the International Agency for Research on Cancer Evaluation of 2015. Chimia (Aarau) 2018; 72: 718-24.
Kim M, Park K. Dietary fat intake and risk of colorectal cancer: a systematic review and meta-analysis of prospective studies. Nutrients 2018; 10.
Shekari S, Fathi S, Roumi Z, et al. Association between dietary intake of fatty acids and colorectal cancer, a case-control study. Front Nutr 2022; 9.
Huang L, Li W, Lu Y, et al. Iron metabolism in colorectal cancer. Front Oncol 2023; 13.
Seiwert N, Heylmann D, Hasselwander S, et al. Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochim Biophys Acta Rev Cancer 2020; 1873: 188334.
Noguchi M, Yoshida T, Kikuchi G. A stoichiometric study of heme degradation catalyzed by the reconstituted heme oxygenase system with special consideration of the production of hydrogen peroxide during the reaction. J Biochem 1983; 93: 1027-36.
Hauck AK, Bernlohr DA. Oxidative stress and lipotoxicity. J Lipid Res 2016; 57: 1976-86.
Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014; 2014: 360438.
Pierre F, Santarelli R, Taché S, et al. Beef meat promotion of dimethylhydrazine-induced colorectal carcinogenesis biomarkers is suppressed by dietary calcium. Br J Nutr 2008; 99: 1000-6.
Pierre F, Tache S, Guéraud F, et al. Apc mutation induces resistance of colonic cells to lipoperoxide-triggered apoptosis induced by faecal water from haem-fed rats. Carcinogenesis 2007; 28: 321-7.
Baradat M, Jouanin I, Dalleau S, et al. 4-Hydroxy-2(E)-nonenal metabolism differs in Apc+/+ cells and in ApcMin/+ cells: it may explain colon cancer promotion by heme iron. Chem Res Toxicol 2011; 24: 1984-93.
Surya R, Héliès-Toussaint C, Martin OC, et al. Red meat and colorectal cancer: Nrf2-dependent antioxidant response contributes to the resistance of preneoplastic colon cells to fecal water of hemoglobin- and beef-fed rats. Carcinogenesis 2016; 37: 635-45.
N IJ, Rijnierse A, de Wit N, et al. Dietary haem stimulates epithelial cell turnover by downregulating feedback inhibitors of proliferation in murine colon. Gut 2012; 61: 1041-9.
Ijssennagger N, Rijnierse A, de Wit NJ, et al. Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyper-proliferation in mouse colon. Carcinogenesis 2013; 34: 1628-35.
Mansour SR, Moustafa MAA, Saad BM, et al. Impact of diet on human gut microbiome and disease risk. New Microbes New Infect 2021; 41: 100845.
IJssennagger N, Derrien M, van Doorn GM, et al. Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk. PLoS One 2012; 7: e49868.
Ijssennagger N, Belzer C, Hooiveld GJ, et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci U S A 2015; 112: 10038-43.
Seiwert N, Adam J, Steinberg P, et al. Chronic intestinal inflammation drives colorectal tumor formation triggered by dietary heme iron in vivo. Arch Toxicol 2021; 95: 2507-22.
Zemans RL, Briones N, Campbell M, et al. Neutrophil transmigration triggers repair of the lung epithelium via beta-catenin signaling. Proc Natl Acad Sci U S A 2011; 108: 15990-5.
Hsu HH, Lin YM, Shen CY, et al. Prostaglandin E2-induced COX-2 expressions via EP2 and EP4 signaling pathways in human LoVo colon cancer cells. Int J Mol Sci 2017; 18.
Wu M, Guan J, Li C, et al. Aberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma. Oncotarget 2017; 8: 82217-30.
Pastille E, Faßnacht T, Adamczyk A, et al. Inhibition of TLR4 signaling impedes tumor growth in colitis-associated colon cancer. Front Immunol 2021; 12.
Fukata M, Chen A, Vamadevan AS, et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastro-enterology 2007; 133: 1869-81.
Santaolalla R, Sussman DA, Ruiz JR, et al. TLR4 activates the β-catenin pathway to cause intestinal neoplasia. PLoS One 2013; 8: e63298.
Wen F, Liu Y, Wang W, et al. Adenomatous polyposis coli genotype-dependent toll-like receptor 4 activity in colon cancer. Oncotarget 2016; 7: 7761-72.
Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer 2009; 125: 2863-70.
Feng J, Liu Y, Zhang C, et al. Phytic acid regulates proliferation of colorectal cancer cells by downregulating NF-kB and β-catenin signalling. Eur J Inflamm 2023; 21: 1721727X231182622.
Amintas S, Dupin C, Boutin J, et al. Bioactive food components for colorectal cancer prevention and treatment: a good match. Crit Rev Food Sci Nutr 2023; 63: 6615-29.
Pettan-Brewer C, Morton J, Mangalindan R, et al. Curcumin suppresses intestinal polyps in APC Min mice fed a high fat diet. Pathobiol Aging Age Relat Dis 2011; 1: 7013.
Shree A, Islam J, Sultana S. Quercetin ameliorates reactive oxygen species generation, inflammation, mucus depletion, goblet disintegration, and tumor multiplicity in colon cancer: probable role of adenomatous polyposis coli, β-catenin. Phytother Res 2021; 35: 2171-84.
Darband SG, Sadighparvar S, Yousefi B, et al. Quercetin attenuated oxidative DNA damage through NRF2 signaling pathway in rats with DMH induced colon carcinogenesis. Life Sci 2020; 253: 117584.
Gonzalez-Donquiles C, Alonso-Molero J, Fernandez-Villa T, et al. The NRF2 transcription factor plays a dual role in colorectal cancer: A systematic review. PLoS One 2017; 12: e0177549.
Lee YJ, Kim WI, Bae JH, et al. Overexpression of Nrf2 promotes colon cancer progression via ERK and AKT signaling pathways. Ann Surg Treat Res 2020; 98: 159-67.
Ren J, Sui H, Fang F, et al. The application of ApcMin/+ mouse model in colorectal tumor researches. J Cancer Res Clin Oncol 2019; 145: 1111-22.
Evron-Levy T, Caspi M, Wittenstein A, et al. Adenoma-Derived Organoids for Precision Therapy. Organoids 2022; 1: 54-68.