Geodesic Distance Kernels

Main Article Content

Uraiwan Somboon*
Praiboon Pantaragphong
Sorin V. Sabau

Abstract

In this paper, the authors deals with non-symmetric kernels induced by weighted quasi-metrics on Hilbert spaces and they study their fundamental properties. These are new and original. Such kind of metrics is obtained from Finsler metrics for example. We show that the use of such kernels may provide a solution to the conflict between positive definiteness of the kernel and the curvature of the underlying space.


 Keywords:Finsler metrics, Hilbert spaces, non-symmetric kernels, weighted quasi-metric spaces


*Corresponding author:       Tel.: +66 91 7300313


E-mail: uraiwan.somboon@gmail.com

Article Details

Section
Original Research Articles

References

[1] Feragen, A., Lauze, F. and Hauberg, S., 2015. Geodesic Exponential Kernels: When Curvature and linearity Conflict. Proceedings of Computer Vision and Pattern Recognition 2015, Boston, June 7-12, 3032-3042.
[2] Jayasumana, S., Hartley, R., Salzmann, M., Li, H. and Harandi, M., 2015. Kernel Methods on Riemannian Manifold with Gaussian RBF Kernels. IEEE Transaction on Pattern Analysis and Machine Intelligence, 37(12), 2464-2477.
[3] Sabau, S.V., Shibuya, K. and Shimada, H., 2014. Metric structures associated to Finsler metrics. Publicationes Mathematicae Debrecen, 84(1-2), 89-103.
[4] Vitolo, P., 1999. The Representation of Weighted Quasi-Metric Spaces. Rendiconti dell'Istituto di Matematica dell'Università di Trieste, XXXI, 95-100.
[5] Valette, A., Bekka, B. and Harpe, P.D., 2008. Kazhdan’s Property (T). New Mathematical Monographs.
[6] Burago, D., Burago, Y. and Ivanov, S., 2001. A course on Metric Geometry. American Mathematical Society.