The Efficacy of Ethyl Acetate Extract of Trichoderma Culture Broth on Growth Inhibition and Aflatoxin Production by Aspergillus flavus IMI 242684

Main Article Content

Jantamas Jantarach*
Dusanee Thanaboripat

Abstract

Antifungal metabolites from Trichoderma spp. isolates TISTR 3167, KMC 5, SRS 4 and SCP III were extracted from cell pellets by methanol and also from culture filtrates by three different solvents, i.e. hexane, ethyl acetate and n-butanol and tested for growth inhibition of A. flavus IMI 242684 using paper disc diffusion assay on potato dextrose agar. Ethyl acetate extracts from TISTR 3167, KMC 5 and SRS 4 were most active against A. flavus IMI 242684 and 50 mg/ml was the optimal concentration. When ethyl acetate extracts of the 3 isolates at 50 mg/ml were further applied to peanut grains, the growth and aflatoxin (B1 and B2) production by A. flavus IMI 242684 were inhibited during 21 days of storage at room temperature.


 Keyword: Antifungal metabolites, Aspergillus flavus, Trichoderma spp., aflatoxins, crude extract, peanut grains


*Corresponding author: Tel: (66)89-528-5072 Fax: (66)2-3298419


   E-mail: jantamas_jan@gmail.com


 

Article Details

Section
Original Research Articles

References

[1] Goto T., Wicklow, D. T. and Ito, Y. 1996. Aflatoxin and cyclopiazonic acid production by a sclerotium - producing Aspergillus tamarii strain. Applied and Environmental Microbiology, 62, 4096-4038.
[2] Peterson, S. W., Ito, Y., Horn, B. W. and Goto, T. 2001. Aspergillus bombycis, a new aflatoxigenic species and genetic variation in its sibling species, A. nomius. Mycologia, 93, 689-703.
[3] Wilson, D. M. and Payne, G. A. 1994. Factors affecting Aspergillus flavus group infection and aflatoxin contamination of crops. In: David L. Eaton and John D. Groopman, Ed. The Toxicology of Aflatoxins. Human Health, Veterinary, and Agricultural Significance. San Diego, Academic Press, Inc., pp. 383-406.
[4] Ito, Y., Peterson, W., Wicklow, D. T. and Goto, T. 2001. Aspergillus pseudotamarii, a new aflatoxin producing species in Aspergillus section Flavi. Mycological Research, 105(2), 233-239.

[5] Carlile, M. J., Watkinson, S. C. and Gooday, G. W. 2001. The Fungi. 2nd ed. San Diego, Academic Press.
[6] Godet, M. and Manaut, F. 2010. Molecular strategy for identification in Aspergillus section Flavi. FEMS Microbiological Letter, 304(2), 157-168.
[7] Smith, J. E. and Moss, M. O. 1985. Mycotoxins. Formation, Analysis and Significance. Chichester, John Wiley & Sons.
[8] Vardon, P. J. 2003. Mycotoxins: risks in plant, animal and human systems, potential economic costs of mycotoxins in the United State. Cast Task Force, 139, 136-142.
[9] Thanaboripat, D., 2002. Importance of aflatoxins. KMITL Science Journal, 2, 38-43.
[10] Reddy, T. Y., Reddy, V. R. and Anbumozhi, V. 2003. Physiological responses of groundnut (Arachis hypogea L.) to drought stress and its amelioration: A critical review. Plant Growth Regulation, 41(1), 75-88.
[11] Anjaiah, V., Thakur, R. P. and Koedam, N. 2006. Evaluation of bacteria and Trichoderma for biocontrol of pre-harvest seed infection by Aspergillus flavus in groundnut. Biocontrol Science and Technology, 16(4), 431-436.
[12] Gachomo, E. W., Mutitu, W. E. and Kotchoni O. S. 2004. Diversity of fungal species associated with peanuts in storage and the levels of aflatoxins in infected samples. International Journal of Agricultural Biology, 6 (6), 955-959.
[13] Will, M. E., Holbrook, C. C. and Wilson, D. M. 1994. Evaluation of field inoculation techniques for screening peanut genotypes for reaction to pre-harvest Aspergillus flavus group infection and aflatoxin contamination. Peanut Science 21, 122-125.
[14] Gachomo, E. W. and Kotchoni O. S. 2008. The use of T. harzianum and T. viride as potential biocontrol agents against peanut microflora and their effectiveness in reducing aflatoxin contamination of infected kernels. Biotechnology, 7(3), 439-447.
[15] Liu, R., Yang, Q., Thanaboripat, D. and Thunsukon, P. 2004. Screening of Trichoderma species for biological control activity on Aspergillus flavus. KMITL Science Journal , 4(1), 81-89.
[16] Shitenberg, D. and Elad, Y. 1997. Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology, 87(3), 332-340.
[17] Bae, Y. S. and Knudsen, G. R. 2005. Soil microbial biomass influence on growth andbiocontrol efficacy of Trichoderma harzianum. Biological Control, 32(2), 236-242.
[18] Lorant, H., Laszlo, M., Laszlo, K., Andras, S., Zsuzsanna, A. and Csaba, V. 2006. Production of Trichoderma strains with pesticide-polyresistance by mutagenesis and protoplast fusion. Antonie van Leeuwenhoek, 89, 387-393.
[19] Sivasithamparam, K. and Ghisalberti, E. L. 1998. Secondary metabolism in Trichoderma and Gliocladium. In Harman, G. E. and Kubicek, C. P. (eds). Trichoderma and Gliocladium. London, Taylor and Francis Ltd., pp. 139-191.
[20] Shi, Yi Jun, Shentu, Xu Ping and Yu, Xiao Ping. 2009. Identification of an endophytic fungus isolated from Llex cornuta and the biocontrol effects of its secondary metabolite. Acta Phytopathologica Sinica, 39 (4), 362-367.
[21] Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y. and Valero, J. R. 2007. Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochemical Engineering Journal, 37(1), 1-20.





[22] Intana,W., Suwanno, T., and Chamswarng, C. 2005. Use of antifungal metabolite from Trichoderma virens for controlling chinese kale leaf spots caused by Alternaria brassicicola. Walailak Journal of Science and Technology, 2(1) 1-9.
[23] Vinale, F., Marra, R. Scala, F. Ghisalberti, E. L., Lorito, M. and Sivasithamparam, K. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters in Applied Microbiology, 43,143-148.
[24] Dua, R., Sonwane, S. K., Srivastava, S. K. and Srivastava, S. D. 2010. Conventional and greener approach for the synthesis of some novel substituted -4-oxothiazolidine and their 5-arylidene derivatives of 2-methyl-benzimidazole: antimicrobial activities. Journal of Chemical and Pharmaceutical Research, 2(1), 415-423.
[25] Akhand, M. A. M., Al-Bari, M. A. A., Islam, M. A. and Khondkar, P. 2010. Characterization and Antimicrobial Activities of a Metabolite from a New Streptomyces Species from Bangladeshi Soil. Journal of Scientific Research, 2 (1), 178-185.
[26] Sauer, D. B. and Burroughs, R. 1986. Disinfection of seed surface with sodium hypochlorite. Phytopathology, 76, 745-749.
[27] Thanaboripat, D., Suvathi, Y., Srilohasin, P., Sripakdee, S., Patthanawanitchai, O. and Charoensettasilp, S. 2007. Inhibitory effect of essential oils on the growth of Aspergillus flavus. KMITL Science and Technology Journal 7, 1-7.
[28] Passone, A. M., Resnik, S. and Etcheverry, G. M. 2008. The potential of food grade antioxidants in the control of Aspergillus section Flavi, interrelated mycoflora and aflatoxin B1 accumulation on peanut grains. Food Control, 19, 364-371.
[29] Matsubara, I. 1995. Some remarks on aflatoxin problems. Seminar on aflatoxin, Export Training Center, Department of Commercial Relations, Bangkok. p8, March 8.
[30] Yin, G., Wang, W., Sha, S., Liu, L. and Yu, X. 2010. Inhibition and control effects of the ethyl acetate extract of Trichoderma harzianum fermented broth against Botrytis cinerea. African Journal of Microbiology Research, 4(15), 1647-1653.
[31] Febles, C. I., Arias, A., Gil-Rodriguez, M. C., Hardisson, A. and Sierra Lopez, A. 1995. In vitro study of antimicrobial activity in algae (Chrorophyta, Phaeophyta and Rodophyta) collected from the coast of Tenerife. Anuario del Instituto de Estudios Canarios, 34, 181-192.
[32] Vizcaino, J. A. Sanz, L., Basilio, A., Vicente, F., Gutierrez, S., Hermosa, M. R. and Monte, E. 2005. Screening of antimicrobial activities in Trichoderma isolates representing three Trichoderma sections. Mycological Research, 109 (12), 1397-1406.
[33] Sastry, V. M. V. S. and Rao, G. R. K. 1994. Antibacterial substances from marine algae: successive extraction using benzene, chloroform and methanol. Botanica Marina, 37, 357-360.
[34] Luckner, M. 1990. Secondary Metabolism in Microorganisms, Plants and Animals. 3rd ed. Springer-Verlag, Berlin
[35] Thanaboripat, D., Sappakitjanon, N., Prommi, L. and Chareonsettasilp. 2009. Screening of fungi for the control of Aspergillus parasiticus. KMITL Science and Technology Journal, 9(2), 95-102.
[36] Calistru, C., McLean, M and Berjak, P. 1997. In vitro studies on the potential for biological control of Aspergillus flavus and Fusaium moniliforme by Trichoderma species. Mycopathologia, 137(2), 115-124.




[37] Doi, S. and Mori, M. 1994. Antifungal properties of metabolites produced by Trichoderma isolates from sawdust media of edible fungi against wood decay fungi. Mater Organ, 28(2), 143-151.
[38] Vey, A., Hoagland, R. E. and Butt, T. M. 2001. Toxic metabolites of fungal biocontrol agents. In Butt, T.M., Jackson, C. and Magan, N. (eds). Fungi as Biocontrol Agents: Progress, Problems and Potential. CAB International, Bristol, pp.311-346.
[39] Benhamou, N. and Cherif, M. 1990. Cytochemical aspects of chitin breakdown during the parasitic action of Trichodema sp. on Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology, 71, 1406-1414.