Density of States Calculation for Indium-Arsenide Zincblende Based on Density Functional Theory

Main Article Content

Mohd Faudzi Umar*
Ahmad Puaad Othman

Abstract

Ab initio study of the density of states on InAs zincblende phase is calculated using the linearized augmented plane wave method based on density functional theory, implemented with WIEN2k codes. These calculations used the local density approximation for the exchange and correlation potential. The result shows that InAs is the n-type smiconductor (donor) which has direct band gap of 0.388eV which is in agreement with experimental result. There is an internal gap between upper valence band and lower valence band. The result indicates a strong hybridization between arsenide atom and 5p state of indium atom, which belongs to the InAs at upper valence band.   


Keywords: Density of states, indium-arsenide, density functional theory


Corresponding author: Tel: +605-4506416  Fax: +605-4583616


E-mail: faudzi@fst.upsi.edu.my

Article Details

Section
Original Research Articles

References

[1] Korte, S., Farrer, I., Beere, H. E. and Clegg, W. J. 2008. Discontinuous yield in InGaAs thin. Surface & Coatings Technology 203, 713-716.
[2] Anantathanasarn, S., Barbarin, Y., Cade, N. I., van Veldhoven, P. J., Bente, E. A. J. M., Oei, Y. S., Kamada, H., Smit, M. K. and Nötzel, R. 2008. Wavelength tunable InAs/InP (100) quantum dots in 1.55-μm telecom devices. Materials Science and Engineering: B, Volume
147, Issues 2-3, 124 -130.
[3] Rashid Ahmed, Javad Hashemifar, Hadi Akbarzadeh, Maqsood Ahmed and Fazal-e-Aleem. 2007. Ab initio study of structural and electronic properties of III-arsenide binary compounds. Computational Materials Science 39, 580 -586.
[4] Bugge, F., Zorn, M., Zeimer, U., Pietrzak, A., Erbert, G. and Weyers, M. 2008. MOVPEgrowth of InGaAs/GaAsP-MQWs for high-power laser diodes studied by reflectance anisotropy spectroscopy. Journal of Crystal Growth, In Press, Accepted Manuscript,
[5] Kamil Kosiel. 2008. MBE—Technology for nanoelectronics. Vacuum, Volume 82, Issue 10,
951-955.
[6] Suzuki, T., Temko, Y., Xu, M. C. and Jacobi, K. 2005. The atomic structure of InAs quantum dots on GaAs (112). Surface Science 595, 194-202.
[7] Hohenberg, P. and Kohn, W. 1964. Inhomogenous electron gas. Physical Review B136, 864-
871.
[8] Kohn, W. and Sham, L. 1963. Self-consistent equations including exchange and correlation effects. Physical Review 140, A1133-1138.
[9] Mahan, G. G. and Subbaswamy, K. R. 1990. Local density theory of polarizability. New York, Plenum Press.
[10] Born, M. and Oppenheimer, R. 1927. On the quantum theory of molecules. Annalen Physik
84, 457-484.
[11] Hatree, D. R. 1928. The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Mathematical Proceeding of the Cambridge Philosophical Society, 24,
89-110.
[12] Zanolli, Z. and Barth, U. V. All-electron study of InAs and GaAs wurzite: Structural and electronic properties. arXix: con-mat/0610066v2.
[13] Engel, E. and Vosko, S. H. 1993. Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations. Physical Review B 47, 13164-
13174.
[14] Perdew, J. P. and Wang, Y. 1992. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B 45, 13244-13249.
[15] Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. and Luitz, J. 2001. WIEN2K, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna, Austria.
[16] Madsen, G. K. H., Blaha, P., Schwarz, K., Sjőstedt, E. and Nordstrőm, L. 2001. Efficiency linearization of the augemented plane-wave method. Phyical Review B 64, 195134-195142.
[17] Perdew, J. P., Burke, K. and Emzerhof, M. 1996. Generalized gradient approximation made simple. Physical Review Letter 77, 3865-3868.
[18] Jeong, J., Schlesinger, T. E. and MilnesX-ray, A. G. 1988. Characterization of InxGa1−xAs/GaAs quantum wells. Journal of Crystal Growth 87(2-3), 265-275.
[19] Elliot, S. R. 1997. The Physics and Chemistry of Solids. London, John Wiley & Sons Ltd.
[20] Bouarissa N., 2001. Optoelectronic properties of InAs1−xPx semiconducting alloys Materials Science and Engineering B 86 (1), 53-59.
[21] Bhat, R., Dutta, P. S. and Guha, S. 2008. Crystal growth and below-bandgap optical absorption studies in InAs for non-linear optic applications. Journal of Crystal Growth 310 (7-9), 1910-1916.
[22] Farah, H. Z. 2007. Simulasi profil struktur jalur bahan semikonduktor InAs berdasarkan Teori Fungsian Ketumpatan. Undergraduate project. University Kebangsaan Malaysia.