The cut locus of a surface of revolution

Main Article Content

Minoru Tanaka

Abstract

-


Keyword : -


E-mail: cast@kmitl.ac.th

Article Details

How to Cite
Tanaka, M. (2018). The cut locus of a surface of revolution. CURRENT APPLIED SCIENCE AND TECHNOLOGY, 3(1), 73–76. retrieved from https://li01.tci-thaijo.org/index.php/cast/article/view/144354
Section
Original Research Articles

References

[1] D. Elerath, An improved Toponogov comparison theorem for non-negatively curved manifolds, J. Differential Geom., 15 (1980), 187-216.
[2] J.J. Hebda, Metric structure of cut loci in surfaces and Ambrose’s problem, J. of Differential Geom., 40 91994), 621-642.
[3] J. Gravesen, S. Markvosen, R. Sinclair and M. Tanaka, The cut loci of torus of revolution, to appear.
[4] R. Sinclair and M. Tanaka, Loki: Software for computing cut loci, Experimental Mathematics 11, (2002), 1-25.
[5] K. Shiohama and M. Tanaka, Cut loci and distance spheres on Alexandrov surfaces, Sémimaires & Congrés, Collection SMF No. 1, Actes de la table ronde de Géométrie différentielle en I’honneur Marcel Berger, (1996), 531-560.