RNA Interference Technology and Its Potential Use in Functional Genomic Analysis
Main Article Content
Abstract
RNA interference (RNAi) refers to the introduction of homologous double standard RNA (dsRNA) to specifically target a gene’s product, resulting in null or hypomorphic phenotypes. RNAi is highly gene specific, so it is much more effective than either sense or antisense RNA for producing gene interference activity. RNAi has recently emerged as a powerful reverse genetic tool to silence gene expression in the field of functional genomic analysis, including plants, Caenorhabditis elegans, and Drosophila for it allows researchers to study the effects of genomic loss of function in developing embryos without the complications of the gene knockout method.
Keywords: RNAi, functional genomic analysis
Corresponding author: E-mail: cast@kmitl.ac.th
Article Details
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
[2] C. Catalanotto, G. Azzalin, G. Macino and C. Cogoni, Nature, 404, 2000, 245.
[3] R.F. Ketting, R.H. Plasterk, Nature, 404, 2000, 296-298.
[4] A.F. Dernburg, J. Zalevsky, M.P. Colaiacovo and A.M. Villeneuve, Genes Dev., 14, 2000, 1578-1583.
[5] D.C. Baulcombe, Fast forward genetics baed on virus-induced gene silencing, Curr. Opin. Plant. Biol., 2, 1999, 109-113.
[6] S. Guo and K. Kemphues, Par-1, a gene required for establishing polarity in embryos, encodes a putative Ser/Thr kinase that is symmetrically disrupted, Cell, 81, 1995, 611-620.
[7] T. Dalmay, A. Hamilton, S. Rudd, S. Angell and D.C. Baulcombe, Cell, 101, 2000, 543-553.
[8] P. Mourrain, C. Beclin, T. Elmayan, F. Feuerbach, C. Godon, J.B. Morel, D. Jouette, A.M. Lacombe, S. Nikic, N. Picault, K. Remoue, M. Sanial, T.A. Vo and H. Vaucheret, Cell, 101, 2000, 533-542.
[9] W. Schiebel, B. Haas, S. Marinkovic, A. Klanner and H.L. Sanger, J. Biol. Chem., 268, 1993, 11858-11867.
[10] W. Schiebel, B. Haas, S. Marinkovic, A. Klanner and H.L. Sanger, J. Biol. Chem., 268, 1993, 11851-11857.
[11] W. Schiebel, T. Pelissier, L. Riedel, S. Thalmeir, R. Schiebel, D. Kempe, F. Lottspeich, H.L. Sanger and M. Wassenegger, Plant Cell, 10, 1998, 2087-2101.
[12] C. Cogoni and G. Macino, Nature, 399, 1999, 166-169.
[13] A. Smardon, J. Spoerke, S. Stacey, M. Klein, N. Mackin and E. Maine, Curr. Biol., 10, 2000, 169-178.
[14] W. Schiebel, B. Haas, S. Marinkovic, A. Klanner and H.L. Sanger, J. Biol. Chem., 268, 1993, 11858-11867.
[15] P.M. Waterhouse, M.W. Graham and M.B. Wang, Proc. Natl. Acad. Sci. USA, 95, 1998, 13959-13964.
[16] J. Hamilton, S. Brown, Y.H. Han, M. Ishizuka, A. Lowe, A.G.A. Solis and D. Grierson, Plant J., 15, 1998, 737-746.
[17] J.A. Birchler, M.P. Bhadra and U. Bhadra, Curr. Opin. Genet. Dev., 10, 2000, 211-216.
[18] M.K. Montgomery, S. Xu and A. Fire, Proc. Natl. Acad. Sci. USA, 95, 1998, 15502-15507.
[19] J.R. Kennerdell and R.W. Carthew, Cell, 95, 1998, 1017-1026.
[20] S. Guo and K.J. Kemphues, Cell, 81, 1995, 611-620.
[21] A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver and C.C. Mello, Nature, 391, 1998, 806-811.
[22] A.J. Hamilton and D.C. Baulcombe, A species of small antisense RNA in posttranscriptional gene silencing in plants, Science 286, 1999, 950-952.
[23] S.M. Hammond, A. A. Caudy, G. J. Hannon, Post-transcriptional Gene Silencing by Double-stranded RNA, Nature Rev. Gen. 2, 2001, 110-119.
[24] S. Hammond, E. Bernstein, D. Beach and G. Hannon, An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells, Nature, 404, 2002, 293-298.
[25] P.D. Zamore, T. Tuschl, P.A. Sharp and D.P. Bartel, RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals, Cell, 101, 2000, 25-33. (Abstract)
[26] P.A. Sharp, RNA Interference-2001, Genes Dev. 15, 2001, 485-490.
[27] G. Hutvagne and P.D. Zamore, RNAi : nature abhors a double-strand, Curr Opin Genetics & Development 12, 2002, 225-232.
[28] E. Bernstein, A.A. Caudy, S.A. Hammond and G.J. Hannon, Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature 409, 2001, 363-366.
[29] A. Nykanen, B. Haley and P.D. Zamore, ATP requirements and small interfering RNA structure in the RNA interference pathway, Cell, 107, 2001, 309-321.
[30] S.M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber and T. Tuschl Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature, 411, 2001, 494-498.
[31] N.J. Caplen, S. Parrish, F. Imani, A. Fire and R.A. Morgan, Specific inhibition of gene expression by small double-stranded RNAs in invertebrates and vertebrate systems, Proc. Natl. Acad. Sci. USA, 98, 2001, 9746-9747.
[32] T. Holen, M. Amarzguioui, M. Wiiger, E. Babaie and H. Prydz, Positional effects of short interferning RNAs targeting the human coagulation trigger Tissue Factor, Nucleic Acids Research 30(8), 2002, 1757-1766.
[33] R.A. Jarvis and L.P. Ford, The siRNA Target Site Is an Important Parameter for Inducing RNAi in Human Cells, Tech. Notes, 8(5), 2001, 3-5.
[34] D. Brown, R. Jarvis, V. Pallotta, M. Byrom and L. Ford, RNA Interference in Mammalian Cell Culture: Design, Execution and Analysis of the siRNA Effect, Tech. Notes, 9(1), 2002, 3-5.
[35] T.R. Brummelkamp, R. Bernards and R. Agami, A system for stable expression of short interfering RNSs in mammalian cells, Science 296, 2002, 550-553.
[36] N.S. Lee, T. Dohjima, G. Bauer, H. Li, M-J. Li, A. Ehsani, P. Salvaterra and J. Rossi, Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells, Nature Biotechnol, 20, 2002, 500-505.
[37] M. Miyagishi and K. Taira, U6-promoter-driven siRNAs with four uridine 3’ overhangs efficiently suppress targeted gene expression in mammalian cells, Nature Biotechnol, 20, 2002, 497-500.
[38] P.J. Paddison, A.A. Caudy, E. Bernstein, G.J. Hannon and D.S. Conklin, Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells, Genes & Dev., 16, 2002, 948-958.
[39] C.P. Paul, P.D. Good, I. Winer and D.R. Engelke, Effective expression of small interfering RNA in human cells, Nature Biotechnol, 20, 2002, 505-508.
[40] G. Sui, C. Soohoo, E-B. Affar, F. Gay, Y. Shi, W.C. Forrester and Y. Shi, A DNA vector-based RNAi technology to suppress gene expression in mammalian cells, Proc. Natl. Acad. Sci. USA, 99(6), 2002, 5515-5520.
[41] J-Y. Yu, S.L. DeRuiter and D.L. Turner, RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells, Proc. Natl. Acad. Sci. USA, 99(9), 2002, 6047-6052.
[42] S.M. Hammond, A.A. Caudy and G.I. Hannon, Post-transcriptional Gene Silencing by Double-stranded RNA, Nature Rev. Gen., 2, 2001, 110-119.