Silica Optical Fibre Based Temperature and Strain Sensors

Main Article Content

T. Sun
K.T.V. Grattan
S.A. Wade
D.I. Forsyth
W.M. Sun

Abstract

This paper reports on work done with a range of silica fibres, doped with several important rare earth ions such as Er, Nd, Yb and Tm, to create a range of novel optical sensors. The approach reported herein is based on monitoring and analysis of the fluorescence decay from such fibres in time domain as well as in the frequency domain. With these fibres, temperature sensors operating in the range from as low as -200 °C to beyond 1000 °C have been constructed. A temperature resolution of the order of a few degrees Celsius has been typically reported from these types of sensors. Fibre of this type has been used in a simple yet effective structural integrity monitoring system (having been incorporated successfully into concrete samples) and an optical fire alarm system with potential applications for engine monitoring has been developed. A further recent discovery is a small level of strain sensitivity in such fibres – this has been explored over the region from 0 to 2000 µɛ, showing a level of resolution better than a few tens of microstrain, but the temperature and strain information can be addressed simultaneously by incorporating Fibre Bragg Gratings (FBGs) in the fibres. Very recent work has shown the potential of this type of intrinsic yet dual sensor for a wide range of temperature and strain measurement.


Keywords: Rare-earth doped fibre sensor, fluorescence decay, fibre Bragg grating (FBC), strain sensor, temperature sensor.


Corresponding author: E-mail: [email protected]

Article Details

Section
Invited paper

References

[1] J.D.C. Jones, Proceedings of the 12th International Optical Fiber Sensors Conference, Williamsburg, VA, 28-31 October 1997, OSA Tech. Digest Series, Vol.16, pp. 36-39.
[2] T. Liu, G.F. Fermando, L. Zhang, I. Bennion, Y.J. Rao and D.A. Jackson, Proceedings of the 12th International Optical Fiber Sensors Conference, Williamsburg, VA, 28-31 October 1997, OSA Tech. Digest Series, Vol. 16, pp. 40-43.
[3] K.T.V. Grattan, Z. Y. Zhang, Fibre Optic Fluorescent Thermometry (Chapman & Hall, London, 1995).
[4] E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D.B. Ostrowsky and G.W. Baxter, Appl. Opt., 34, 8019(1995).
[5] V.C. Fernicola, Z.Y. Zhang and K. T. V. Grattan, Rev. Sci. Instrum., 68, 2418 (1997).
[6] Y.L. Hu, Z.Y. Zhang, K.T.V. Grattan, A.W. Plamer and B.T. Meggitt, Sensors and Actuators A, 63, 85(1997).
[7] T. Sun, Z.Y. Zhang, K.T.V. Grattan and A.W. Palmer, Rev. Sci. Instrum., 68(9), 3442(1997).
[8] G. Baxter, S. Wade, S. Collins, G. Monnom and E. Maurice, Proc. SPIE 2841, 249(1996).
[9] T. Sun, Z.Y. Zhang, K.T.V. Grattan and A.W. Plamer, Rev. Sci. Instrum., 68(9), 347(1997).
[10] Z.Y. Zhang, K.T.V. Grattan, A.W. Palmer and B.T. Meggitt, Rev. Sci. Instrum., 68, 2759(1997).
[11] K.T.V. Grattan, J.D. Manwell, S.M.L. Sim and C.A. Wilson, Opt. Commun., 62, 104(1987).
[12] Z.Y. Zhang, K.T.V. Grattan, A.W. Palmer and B.T. Meggitt, Rev. Sci. Instrum., 69, 139(1998).
[13] Z.Y. Zhang, K.T.V. Grattan, A.W. Palmer, B.T. Meggitt and T. Sun, Rev. Sci. Instrum., 68, 2764(1997).
[14] Z.Y. Zhang, T. Sun, K.T.V. Grattan and A.W. Palmer, Sensors and Actuators A, 71, 183(1998).
[15] T. Sun, Z.Y. Zhang, K.T.V. Grattan and A.W. Palmer, Ytterbium-based fluorescence decay time fiber optic temperature sensor systems, Rev. Sci. Instrum.,69, 4179(1998).
[16] Z.Y. Zhang, K.T.V. Grattan, A.W. Palmer and B.T. Meggitt, Rev. Sci. Instrum., 69, 3210(1998).
[17] S.F. Collins, G.W. Baxter, S.A. Wade, T. Sun, K.T.V. Grattan, Z.Y. Zhang and A.W. Palmer, J. Appl. Phys., 84, 4649(1998).
[18] P.V. dos Santos, M.T. de Araujo, A.S. Gouveia-Neto, J.A. Medeiros Neto, and A.S.B. Sombra, IEEE J. Quantum Electron. 35, 395 (1999).
[19] Y.C. Lai, Q.F. Qiu, W. Zhang, L. Zhang, I. Bennion and K.T.V. Grattan, Simultaneous measurement of temperature and strain by combining active fibre with fibre gratings. Sensors and their Applications XI, London, September 2001, Pub: Institute of Physics Publishing, Bristol, UK, (Eds: K.T.V. Grattan & S.H. Khan) pp135-9, 2001.
[20] G.Brambilla, T.P. Newson and H. Rutt, Material optimization for high-temperature grating devices written by KrF excimer lasers, In-Fibre Bragg Gratings and Special Fibres, meeting held in conjunction with Photonex 2001 on 17th October, 2001.
[21] T. Sun, Z.Y. Zhang, K.T.V. Grattan and A.W. Palmer, Erbium/ytterbium fluorescence sensor system, Rev. Sci. Instrum., 71, 4017 (2000).
[22] M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers, Dekker, New York, 1993.
[23] Z.Y. Zhang, K.T.V. Grattan, Y.L. Hu, A.W. Palmer and B.T. Meggittt, Rev. Sci. Instrum., 67, 2590 (1996).
[24] Z.Y.Zhang, K.T.V. Grattan and A.W. Palmer, Rev. Sci. Instrum., 64, 2531 (1997).
[25] S.V. Chernikov, Y. Zhu and J.R. Taylor, Opt. Lett. 22, 298 (1997).
[26] R. Paschotta, J. Nilsson, A.C. Tropper and D.C. Hanna, IEEE J.Quantum Electron., 33, 1049(1997).
[27] R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper and D.C. Hanna, Optics Commun., 136, 375(1997).
[28] Y.R. Shen and K.L. Bray, Phys. Rev. B., 56, 10882(1997).
[29] T. Sun, Z.Y. Zhang and K.T.V. Grattan, Rev. Sci. Instrum., 72, 2191(2001).