Entanglement Based Quantum Communication

Main Article Content

H. Weinfurter
Ch. Kurtsiefer

Abstract

Fundamental quantum effects lie at the heart of new proposals for quantum communication and computation, like Quantum Cryptography and Quantum Teleportation. Here we describe the experimental status of quantum communication schemes, which improve existing classical methods or add new features to the world of communication.


Keywords: quantum communication, quantum teleportation.


Corresponding author: E-mail: cast@kmitl.ac.th

Article Details

Section
Invited paper

References

[1] Bennett, C.H. “Quantum Information”, Physics Today, 48(10):24, 1995. Bouwmeester, D., Ekert, A., and Zeilinger, A., editors. The Physics of Quantum Information, Springer, 2000.
[2] Greenberger, D.M., Horne, M.A., and Zeilinger, A. “Multi-particle Interferometry and the Superposition Principle”. Phys. Today, p. 22, August 1993; foe detailed overviews see Chiao, R.Y., Kwiat, P.G., and Steinberg, A.M., in Advances in Atomic, Molecular and Optical Physics, Vol. 34, B. Bederson and H. Walther, ed., Academic Press, 1994; Weinfurter, H. ibid. Vol.39, 1999.
[3] Bennett, C.H., Brasssard,G. “Quantum Cryptography: Public Key Distribution and Coin Tossing”, Proc. IEEE Int. Conf. Computer Systems and Signal Processing, Bangalore, India. IEEE, New York, pp.175, (1984).
[4] Ekert, A. “Quantum cryptography based on Bell’s theorem”, Phys. Rev. Lett., 67:661-664, 1991.
[5] Bell, J.S., “On the Einstein Podolsky Rosen paradox”, Physics (Long Island City, N.Y.) 1:195, 1965.
[6] Tittel, W., Brendel, J, Zbinden, H., and Gissin, N. Phys. Rev. Lett., 81:3563-3567, 1998.
[7] Wigner, E.P. “On hidden variables and quantum mechanical probabilities”, Am. J. Phys., 38: 1005-1009, 1970.
[8] Bennet, C.H., Wiesner, S. Phys. Rev. Lett., 69: 2881-2884, 1992.
[9] Bennet, C.H., Brassard, G., Crépeau, C., Josza, R., Peres, A., Wootters, W.K. “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”. Phys. Rev. Lett., 70: 1895-1899, 1993.
[10] Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.H. “New High-Intensity Source of Polarization-Entangled Photon Pairs”. Phys. Rev. Lett, 75: 4337-4341, 1995.
[11] Jennnewin, T., Weinfurter, H., and Zeilinger, A., “A compact quantum random number generator”, Rev. Sci. Instr., 41:16751680(2000).
[12] Jennewein, T., Simon, Ch., Weihs, G., Weinfurter, H., and Zeilinger, A. “Quantum Cryptogrpahy with polarization entangled photons”. Phys. Rev. Lett., 84: 4729-4732(2000).
[13] Weinfurter, H. “Experimental Bell-state Analysis”, Europhys. Lett., 25:559, 1994. Zukowski, M., Zeilinger, A., and Weinfurter, H., “Entangling Photons Radiated by Independent Pulsed Sources”, Ann. N.Y. Acad. Science, 755:91-97, 1995. Rarity, J. G., ibid. p.624-628.
[14] Mattle, K., Weinfurter, H., Kwiat, P.G., and Zeilinger, A. “Dense Coding in Experimental Quantum Communication”. Phys. Rev. Lett., 76: 4656-4660, 1996.
[15] Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A. “Experimental Quantum Teleportation”. Nature, 390: 575, 1997.
[16] Pan, J.-W., Bouwmeester, D., Weinfurter, H., and Zeilinger, A. Phys. Rev. Lett., 80:3891-3895, 1998.
[17] J. Volz, Ch. Kurtsiefer, H. Weinfurter: “Compact All-Solid-State Source of Polarization Entangled Photon Pairs”, Appl. Phys. Lett., 79:869871 (2