Entanglement Based Quantum Communication
Main Article Content
Abstract
Fundamental quantum effects lie at the heart of new proposals for quantum communication and computation, like Quantum Cryptography and Quantum Teleportation. Here we describe the experimental status of quantum communication schemes, which improve existing classical methods or add new features to the world of communication.
Keywords: quantum communication, quantum teleportation.
Corresponding author: E-mail: cast@kmitl.ac.th
Article Details
Copyright Transfer Statement
The copyright of this article is transferred to Current Applied Science and Technology journal with effect if and when the article is accepted for publication. The copyright transfer covers the exclusive right to reproduce and distribute the article, including reprints, translations, photographic reproductions, electronic form (offline, online) or any other reproductions of similar nature.
The author warrants that this contribution is original and that he/she has full power to make this grant. The author signs for and accepts responsibility for releasing this material on behalf of any and all co-authors.
Here is the link for download: Copyright transfer form.pdf
References
[2] Greenberger, D.M., Horne, M.A., and Zeilinger, A. “Multi-particle Interferometry and the Superposition Principle”. Phys. Today, p. 22, August 1993; foe detailed overviews see Chiao, R.Y., Kwiat, P.G., and Steinberg, A.M., in Advances in Atomic, Molecular and Optical Physics, Vol. 34, B. Bederson and H. Walther, ed., Academic Press, 1994; Weinfurter, H. ibid. Vol.39, 1999.
[3] Bennett, C.H., Brasssard,G. “Quantum Cryptography: Public Key Distribution and Coin Tossing”, Proc. IEEE Int. Conf. Computer Systems and Signal Processing, Bangalore, India. IEEE, New York, pp.175, (1984).
[4] Ekert, A. “Quantum cryptography based on Bell’s theorem”, Phys. Rev. Lett., 67:661-664, 1991.
[5] Bell, J.S., “On the Einstein Podolsky Rosen paradox”, Physics (Long Island City, N.Y.) 1:195, 1965.
[6] Tittel, W., Brendel, J, Zbinden, H., and Gissin, N. Phys. Rev. Lett., 81:3563-3567, 1998.
[7] Wigner, E.P. “On hidden variables and quantum mechanical probabilities”, Am. J. Phys., 38: 1005-1009, 1970.
[8] Bennet, C.H., Wiesner, S. Phys. Rev. Lett., 69: 2881-2884, 1992.
[9] Bennet, C.H., Brassard, G., Crépeau, C., Josza, R., Peres, A., Wootters, W.K. “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”. Phys. Rev. Lett., 70: 1895-1899, 1993.
[10] Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.H. “New High-Intensity Source of Polarization-Entangled Photon Pairs”. Phys. Rev. Lett, 75: 4337-4341, 1995.
[11] Jennnewin, T., Weinfurter, H., and Zeilinger, A., “A compact quantum random number generator”, Rev. Sci. Instr., 41:16751680(2000).
[12] Jennewein, T., Simon, Ch., Weihs, G., Weinfurter, H., and Zeilinger, A. “Quantum Cryptogrpahy with polarization entangled photons”. Phys. Rev. Lett., 84: 4729-4732(2000).
[13] Weinfurter, H. “Experimental Bell-state Analysis”, Europhys. Lett., 25:559, 1994. Zukowski, M., Zeilinger, A., and Weinfurter, H., “Entangling Photons Radiated by Independent Pulsed Sources”, Ann. N.Y. Acad. Science, 755:91-97, 1995. Rarity, J. G., ibid. p.624-628.
[14] Mattle, K., Weinfurter, H., Kwiat, P.G., and Zeilinger, A. “Dense Coding in Experimental Quantum Communication”. Phys. Rev. Lett., 76: 4656-4660, 1996.
[15] Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., and Zeilinger, A. “Experimental Quantum Teleportation”. Nature, 390: 575, 1997.
[16] Pan, J.-W., Bouwmeester, D., Weinfurter, H., and Zeilinger, A. Phys. Rev. Lett., 80:3891-3895, 1998.
[17] J. Volz, Ch. Kurtsiefer, H. Weinfurter: “Compact All-Solid-State Source of Polarization Entangled Photon Pairs”, Appl. Phys. Lett., 79:869871 (2