Poles and Straight Lines on Surfaces

Main Article Content

Minoru Tanaka

Abstract

There are open problems originated from classical differential geometry. In this note some interesting open problems will be introduced.


Keywords: -


Corresponding author: E-mail: m-tanaka@sm.u-tokai.ac.jp

Article Details

Section
Original Research Articles

References

[1] K. Inoue, Straight lines on a surface of revolution homeomorphic to a cylinder, (in Japanese) (1998), Master thesis, Tokai university.
[2] M. Maeda, Geodesic spheres and poles, Geometry of Manifolds, Academic Press, MA, 1989, 281-293.
[3] H. von Mangodt, Über diejenigen Punkte auf positive gekrümmten Flächen, welche die Eingenschaft haben, dass die von Ihnen ausgehenden geodätischen Linien nie aufhören, kürzeste Linien zu sein, J. Reine. Angrew. Math. 91, (1881), 23-53.
[4] K. Shiohama, T. Shioya and M. Tanaka, The Geometry of Total Curvature on Complete Open Surfaces, Cambridge Tracts in Mathematics, No. 159. Cambridge University Press, (2003)
[5] R. Sinclair and M. Tanaka, Loki: Software for computing cut loci, Experimental Mathematics 11, (2002), 1-25.
[6] R. Sinclair and M. Tanaka, The set of poles of a two-sheeted hyperboloid, Experiment, Math. 11 (2002), 27-36.
[7] Sugahara, K., On the poles of Riemannian manifolds of nonnegative curvature, Progress in Differential Geometry, Advanced Studies in Pure Math., vol. 22 (1993), 321-332.
[8] M. Tanaka, On a characterization of a surface of revolution with many poles, Memoirs Fac. Sci. Kyushu Univ. Ser. A, 46 (1992), 251-268.