Replacement Algorithms for the Multiple Complex-System Model

Main Article Content

Chartchai Leenawong*
Nisakorn Wattanasiripong

Abstract

This research examines the NKC model, a model for studying behaviors of the multiple complex systems, in some certain aspects. In particular, various algorithms to be used in the replacement process of the NKC model are proposed. The NKC model incorporates the effects of interaction among components both in the same and different subsystems on the expected overall system performance. The objective of this combinatorial optimization model using the proposed replacement approaches is to achieve the highest level of such performance while at the same time, trying to reduce the expected number of replacements needed to arrive at that level. Through the use of computer simulations, it is shown how the different replacement algorithms affect these values of interest, that is, the expected overall system performance and the expected number of replacements.


Keywords:  Replacement Algorithms, Complex Systems, Mathematical Modeling


Corresponding author: E-mail: klchartc@kmitl.ac.th

Article Details

Section
Original Research Articles

References

[1] Kauffman S. A., 1993. The Origins of Order, Oxford: Oxford University Press.
[2] Derrida B., 1981. Random-Energy Model: An Exactly Solvable Model of Disordered Systems, Physical review B, 24, 2613-2620.
[3] Levinthal D. A., 1997. Adaptation on Rugged Landscapes, Management Science, 43, 934-950.
[4] Westhoff F. H., Yarbrough B. V., and Yarbrough R.M., 1996. Complexity, Organization, and Stuart Kauffman’s the Origins of Order, Journal of Economic Behavior and Organization, 29, 1-25.
[5] Leenawong C., 2003. On Modeling a Complex System with Interacting Components, KMITL Science Journal, 3, 107-115.
[6] Kauffman S. A. and Johnsen S. 1991. Convolution to the Edge of Chaos: Coupled Fitness Landscapes, Poised State, and Coevolutionary Avalanches, Journal of Theoretical Biology, 149, 476-505.
[7] Leenawong C. and Maneechai S., 2004. Combinatorial Optimization Model for Studying Multiple Complex Systems, Proceedings of the International Conference on Computing, Communications and Control Technologies, Austin, TX, pp. 88-96.
[8] Solow, D., Burnetas, A. N, Tsai, M., and Greenspan, N., 2000. On the Expected Performance of Systems with Complex Interactions among Components, Complex Systems, 12, 423-456.
[9] Solow D., Burnetas A., Tsai M., and Greenspan N.S., 1999. Understanding and Attenuating the Complexity Catastrophe in Kauffman’s NK Model of Genome Evolution, Complexity, 5, 1-21.
[10] Solow D., Vairaktarakis G., Piderit K. Sand Tsai M.C., 2002. Managerial Insights into the Effects of Interactions among Members of a Team, Management Science, 48, 1060-1073.