Design of Ni-based Bulk Metallic Glasses with Improved Mechanical and Corrosion Properties

Main Article Content

Gayatri Tanuja Guddla
Suman Gandi
Satyadevi Ambadipudi
Balaji Rao Ravuri*

Abstract

Bulk metallic glasses (BMGs) are synthesized using high energy mechanical ball milling technique with the general formula, [Ni-Cr-Si]100-x:Nbx (x = 0, 3, 6 and 9 at.%, labelled as NCSNb0, NCSNb3, NCSNb6, NCSNb9). Interestingly, all the thermal, mechanical and corrosion properties are greatly enhanced with increase in Niobium (Nb) content up to 6 at.% (NCSNb6). XRD analysis shows that the phase attribution over all the BMGs is due to Nickel (Ni, 98-006-0833), Chromium (Cr, 98-002-1500), Silicon (Si, 98-001-2990) and Niobium (Nb, 98-002-3331). The values of the largest super-cooled liquid region width and plastic strain attained are 232 K and 0.94±0.1%, for the NCSNb6 BMG sample. The considerable addition of Niobium (Nb ~ 6 at.%) content in [Ni-Cr-Si] BMG network (NCSNb6) is anticipated to have the best glass-forming ability, mechanical and corrosive resistant properties and is expected to be used as potential material for lightweight vehicle applications.


 


Keywords: glass-forming ability; bulk metallic glass; super-cooled liquid region


*Corresponding author: Tel.: (+91) 08455221307


                                             E-mail: [email protected]

Article Details

Section
Original Research Articles

References

Klement, W., Willens, R.H. and Duwez, P.O.L., 1960. Non-crystalline structure in solidified gold-Silicon alloys. Nature, 187(4740), 869-870.

Hofmann, D.C., 2013. Bulk metallic glasses and their composites: a brief history of diverging fields. Journal of Materials, 2013, https://doi.org/10.1155/2013/517904

Chen, M. 2011. A brief overview of bulk metallic glasses: A review. NPG Asia Materials, 3, 82-90.

Choi-Yim, H. and Johnson, W.L., 1997. Bulk metallic glass matrix composites. Applied Physics Letters, 71(26), 3808-3810.

Inoue, A., 1998. Bulk Amorphous Alloys: Preparation and Fundamental Characteristics. Uetikon-Zürich: Trans Tech Publications.

Inoue, A., 1999. Bulk Amorphous Alloys: Practical Characteristics and Applications. Vol. 6. Uetikon-Zürich: Trans Tech Publications.

Suryanarayana, C. and Inoue, A., 2011. Bulk Metallic Glasses, 208-211. Boca Raton: CRC Press.

Lu, Z.P. and Liu, C.T., 2004. Role of minor alloying additions in formation of bulk metallic glasses: A review. Journal of Materials Science, 39(12), 3965-3974.

Peker, A. and Johnson, W.L., 1993. A highly processable metallic glass: Zr41.2Ti13.8 Cu12.5 Ni10.0Be22.5. Applied Physics Letters, 63(17), 2342-2344.

Park, E.S. and Kim, D.H., 2005. Design of bulk metallic glasses with high glass forming ability and enhancement of plasticity in metallic glass matrix composites: A review. Metals and Materials International, 11(1), 19-27.

Feng, Y., Cai, A.H., Ding, D.W., Liu, Y., Wu, H., An, Q., Ning, H., Zhou, G.J. and Peng, Y.Y., 2019. Composition design and properties of Cu-Zr-Ti bulk metallic glass composites. Materials Chemistry and Physics, 232, 452-459.

Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K. and Ma, E., 2004. Bulk metallic glass formation in the binary Cu-Zr system. Applied Physics Letters, 84(20), 4029-4031.

Xia, L., Li, W.H., Fang, S.S., Wei, B.C. and Dong, Y.D., 2006. Binary Ni-Nb bulk metallic glasses. Journal of Applied Physics, 99, 026103-026106.

Senkov, O.N. and Scott, J.M., 2005. Glass forming ability and thermal stability of ternary Ca-Mg-Zn bulk metallic glasses. Journal of Non-crystalline Solids, 351(37-39), 3087-3094.

Schuster, B.E., Wei, Q., Hufnagel, T.C. and Ramesh, K.T., 2008. Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Materialia, 56(18), 5091-5100.

Sun, Y.J., Qu, D.D., Huang, Y.J., Liss, K.D., Wei, X.S., Xing, D.W. and Shen, J., 2009. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability. Acta Materialia, 57(4), 1290-1299.

Liu, C.T. and Lu, Z.P., 2005. Effect of minor alloying additions on glass formation in bulk metallic glasses. Intermetallics, 13(3-4), 415-418.

Kui, H.W., Greer, A.L. and Turnbull, D., 1984. Formation of bulk metallic glass by fluxing. Applied Physics Letters, 45(6), 615-616.

Niu, H.Y., Cao, F.F., Deng, K.K., Nie, K.B., Kang, J.W. and Wang, H.W., 2020. Microstructure and corrosion behavior of the As-extruded Mg-4Zn-2Gd-0.5 Ca alloy. Acta Metallurgica Sinica (English Letters), 33(3) 362-374.

Warren, B.E., 1990. X-ray Diffraction. North Chelmsford: Courier Corporation.

Egami, T., 2010. Understanding the properties and structure of metallic glasses at the atomic level. Journal of Materials, 62(2), 70-75.

Wang, X.D., Bednarcik, J., Franz, H., Lou, H.B., He, Z.H., Cao, Q.P. and Jiang, J.Z., 2009. Local strain behavior of bulk metallic glasses under tension studied by in situ x-ray diffraction. Applied Physics Letters, 94(1), 011911-011913

Stoica, M., Das, J., Bednarčik, J., Wang, G., Vaughan, G., Wang, W.H. and Eckert, J., 2010. Mechanical response of metallic glasses: Insights from in-situ high energy x-ray diffraction. Journal of Materials, 62(2), 76-82.

Zhou, W., Zhang, C., Sheng, M. and Hou, J., 2016. Glass forming ability and corrosion resistance of Zr-Cu-Ni-Al-Ag bulk metallic glass. Metals, 6(10), 230- 236

Lu, Z.P., Bei, H. and Liu, C.T., 2007. Recent progress in quantifying glass-forming ability of bulk metallic glasses. Intermetallics, 15(5-6), 618-624.

Kivelson, D., Kivelsonb, S.A., Zhao, X., Nussinovb, Z. and Tarjusc, G., 1995. A thermodynamic theory of supercooled liquids. Physica A: Statistical Mechanics and Its Applications, 219(1), 27-38

Debenedetti, P.G. and Stillinger, F.H., 2001. Supercooled liquids and the glass transition. Nature, 410(6825), 259-267.

Li, Y.H., Zhang, W., Dong, C., Qiang, J.B., Xie, G.Q., Fujita, K. and Inoue, A., 2012. Glass-forming ability and corrosion resistance of Zr-based Zr-Ni-Al bulk metallic glasses. Journal of Alloys and Compounds, 536, S117-S121.

Fathi, M., Safavi, M.S., Mirzazadeh, S., Ansariyan, A. and Ahadzadeh, I., 2020. A promising horizon in mechanical and corrosion properties improvement of Ni-Mo coatings through incorporation of Y2O3 nanoparticles. Metallurgical and Materials Transactions A, 51(2), 897-908.

Maddin, R. and Masumoto, T., 1972. The deformation of amorphous palladium-20 at.% Silicon. Materials Science and Engineering, 9, 153-162.

Argon, A.S., 1979. Plastic deformation in metallic glasses. Acta Materilia., 27(1), 47-58.

Hufnagel, T.C., Ott, R.T. and Almer, J., 2006. Structural aspects of elastic deformation of a metallic glass. Physical Review B, 73(6), 064204.

Schuh, C.A., Hufnagel, T.C. and Ramamurty, U., 2007. Mechanical behavior of amorphous alloys. Acta Materialia, 55(12), 4067-4109.

Tian, L., Cheng, Y.Q., Shan, Z.W., Li, J., Wang, C.C., Han, X.D., Sun, J. and Ma, E., 2012. Approaching the ideal elastic limit of metallic glasses. Nature Communications, 3(1), 1-6.

Egami, T., Iwashita, T. and Dmowski, W., 2013. Mechanical properties of metallic glasses. Metals, 3(1), 77-113.

Langer, J.S., 2008. Shear-transformation-zone theory of plastic deformation near the glass transition. Physical Review E, 77(2), 021502.

Trexler, M.M., and Thadhani, N.N., 2010. Mechanical properties of bulk metallic glasses. Progress in Materials Science, 55(8), 759-839.

Wang, S.L., Li, H.X., Zhang, X.F. and Yi, S., 2009. Effects of Cr contents in Fe based bulk metallic glasses on the glass forming ability and the corrosion resistance. Materials Chemistry and Physics, 113(2-3), 878-883.

Chang, Z., Wang, W., Ge, Y., Zhou, J. and Cui, Z., 2018. Microstructure and mechanical properties of Ni-Cr-Si-B-Fe composite coating fabricated through laser additive manufacturing. Journal of Alloys and Compounds, 747, 401-407.

Qiu, C.L., Liu, L., Sun, M. and Zhang, S.M., 2005. The effect of Nb addition on mechanical properties, corrosion behavior, and metal‐ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid. Journal of Biomedical Materials Research Part A, 75(4), 950-956.

Pang, S.J., Zhang, T., Asami, K. and Inoue, A., 2002. Bulk glassy Fe-Cr-Mo-C-B alloys with high corrosion resistance. Corrosion Science, 44(8), 1847-1856.

Naka, M., Hashimoto, K. and Masumoto, T., 1976. High corrosion resistance of Chromium-bearing amorphous iron alloys in neutral and acidic solutions containing chloride. Corrosion, 32(4), 146-152.

Adylov, G.T., Voronov, V.G. and Sigalov, L.M., 1987. The system Nd2O3-Y2O3. Inorganic Materials, 23(11), 1644-1646.

Shibli, S.M.A., Chinchu, K.S. and Sha, M.A., 2019. Development of nano-tetragonal Zirconia-Incorporated Ni-P coatings for high corrosion resistance. Acta Metallurgica Sinica (English Letters), 32(4), 481-494.

Lu, Z.P. and Liu, C.T., 2002. A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 50(13), 3501-3512.

Nieh, T.G., Yang, Y., Lu, J. and Liu, C.T., 2012. Effect of surface modifications on shear banding and plasticity in metallic glasses: An overview. Progress in Natural Science: Materials International, 22(5), 355-363.

Park, E.S., Kim, D.H., Ohkubo, T. and Hono, K., 2005. Enhancement of glass forming ability and plasticity by addition of Nb in Cu-Ti-Zr-Ni-Si bulk metallic glasses. Journal of Non-Crystalline Solids, 351(14-15), 1232-1238.

Pang, S.J., Zhang, T., Asami, K. and Inoue, A., 2002. Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance. Acta Materialia, 50(3), 489-497.

Souza, C.A.C., Ribeiro, D.V. and Kiminami, C.S., 2016. Corrosion resistance of Fe-Cr-based amorphous alloys: An overview. Journal of Non-Crystalline Solids, 442, 56-66.

Qin, C.L., Zhang, W., Asami, K., Kimura, H., Wang, X.M. and Inoue, A., 2006. A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties. Acta Materialia, 54(14), 3713-3719.

Asami, K., Qin, C.L., Zhang, T. and Inoue, A., 2004. Effect of additional elements on the corrosion behavior of a Cu-Zr-Ti bulk metallic glass. Materials Science and Engineering: A, 375, 235-239.

Tang, J., Wang, Y., Zhu, Q., Chamas, M., Wang, H., Qiao, J., Zhu, Y. and Normand, B., 2018. Passivation behavior of a Zr60Cu20Ni8Al7Hf3Ti2 bulk metallic glass in sulfuric acid solutions. International Journal of Electrochemical Science, 13, 6913-6929.