Assessment of the Effects of Land Use/Land Cover Changes on Soil Loss and Sediment Yield Using WaTEM/SEDEM Model: Case Study of Ziz Upper Watershed in SE-Morocco

Main Article Content

Fenjiro Imad
Zouagui Anis
Manaouch Mohamed*

Abstract

Water erosion and sediment production rates are closely related to land use and land cover (LULC). A spatially distributed soil erosion and sediment delivery model can be used as a good tool to assess the effects of changes in land use/land cover on erosion processes. However, the calibration of such a model requires a lot of data, which is sometimes non-existent. In this work, WaTEM/SEDEM model of spatial distribution of sediments and their delivery to rivers was applied to the large Ziz basin (4,435 km2) in south-eastern Morocco. Model calibration and validation were carried out based on recorded sediment yield during the period from 1973 to 2009 at Hassan Eddakhil dam in the catchment outlet. Thereafter, three LULC scenarios were modeled by reproducing land use/land cover in 1936 and in 1957 and then a hypothetical future scenario. The results of LULC dynamics revealed that degraded forest drastically declined while rangeland substantially increased between 1936 and 2017. These changes in LULC can be explained by the interactions between bioclimatic factors and ecologically inadequate and ultimately destructive human interventions (overgrazing, deforestation). The comparison of WaTEM/SEDEM simulations for these scenarios with the current situation of LULC shows that sediment yield has increased from 1.5 million to 2.2 million ton/year and an increase in specific sediment yield from 3.37 to 5.6 t/ha/year. For soil erosion classes, the results show a trend of slight to moderate class from 1936 to current situation. The present study has shown that the great anthropogenic pressure on the natural resources of the Ziz upper watershed ended by the outcropping of pavements of soils exposed directly to the erosive processes.


 


Keywords: LULC change; WaTEM/SEDEM; GIS; sediment yield; Ziz; SE Morocco


*Corresponding author: Tel.: (+212) 672561079 Fax: (+212) 672561079


                                             E-mail: mmanaouch@gmail.com

Downloads

Download data is not yet available.

Article Details

Section
Research Articles

References

[1] Ferreira, C.S., Pereira, P. and Kalantari, Z., 2018. Human impacts on soil. Science of the Total Environment, 644, 830-834.
[2] Navas, A., Machin, J., Gaspar, L., Sadiki, A., Kabiri, L. and Faleh, A., 2013. Les sols dans le pays du Ziz (Sud-est marocain) Caractéristiques et aspects de dégradation. Fes: Info-Print.
[3] IPBES, 2018. Summary for policymakers of the thematic assessment report on land degradation and restoration of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In: R. Scholes, L. Montanarella, A. Brainich, N. Barger, B. ten Brink, M. Cantele, B. Erasmus, J. Fisher, T. Gardner, T.G. Holland, F. Kohler, J.S. Kotiaho, G. Von Maltitz, G. Nangendo, R, Pandit, J. Parrotta, M.D. Potts, S. Prince, M. Sankaran and L. Willemen, eds. Intergovernmental Platform on Biodiversity and Ecosystems Services Secretariat, Bonn: IPBES, pp. 1-31.
[4] Panagos, P. and Katsoyiannis, A., 2019. Soil erosion modelling: the new challenges as the result of policy developments in Europe. Environmental Research, 172, 470-474.
[5] Kirkby, M.J., Irvine, B.J., Jones, R.J.A., Govers, G. and PESERA Team, 2008. The PESERA coarse scale erosion model for Europe. I.–Model rationale and implementation. European Journal of Soil Science, 59(6), 1293-1306.
[6] Schroter, D., Cramer, W., Leemans, R., Prwntice, I.C., Araujo, M.B., Arnell, N.W., Bondeau, A., Bugmann, H., Carter, T.R., Gracia, C.A., de la Vega-Leinert, A.C., Erhard, M., Ewert, F., Glendining, M., House, J.I., Kankaanpaa, S., Klein, R.J.T., Lavorel, S., Lindner, M., Metzger, M.J., Meyer, J., Mitchell, T.D., Reginster, I., Rounsevell, M., Sabate, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M.T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S. and Zierl, B., 2005. Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333-1337.
[7] Alatorre, L.C., Beguería, S., Lana-Renault, N., Navas, A. and García-Ruiz, J.M., 2012. Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model. Hydrology and Earth System Sciences, 16(5), 1321-1334.
[8] PNABV, 1995. Plan national d’aménagement des bassins versants au Maroc. [Online] Available at: www.eauxetforets.gov.ma
[9] Heusch, B., 1970. L’érosion du Prérif. Annales de la Recherche Forestière au Maroc, 12, 9-179.
[10] Van Oost, K., Govers, G. and Desmet, P.J.J., 2000. Evaluating the effects of landscape structure on soil erosion by water and tillage. Landscape Ecology, 15(6), 579-591.
[11] Van Rompaey, A.J.J., Verstraeten, G., Van Oost, K., Govers, G. and Poesen, J., 2001. Modelling mean annual sediment yield using a distributed approach. Earth Surface Processes and Landforms, 26(11), 1221-1236.
[12] Billaux, P. and Bryssine, G., 1967. Les sols du Maroc. In : Congrès de pédologie méditerranéenne: Excursion au Maroc. Cahiers de la Recherche Agronomique, 1, 59-101.
[13] ABH-GZR, 2019. Agence du Bassin Hydraulique de Guir-Ziz-Ghris. [Online] Available at: http://www.abhgzr.ma.
[14] HCP, 2015. Haut-Commissariat au Plan du Maroc : Centre National de Documentation. [Online] Available at: https://www.hcp.ma.
[15] PNABV, 2014. Plan National d’Aménagement des Bassins Versants : Étude d’aménagement du bassin versant d’Assif Melloul, Agence du Bassin Hydraulique de l’Oum Er-Rbia. [Online] Available at: www.eauxetforets.gov.ma
[16] Gonzague, D. and Despujols, M., 1939. Carte géologique de Midelt au 1: /200 000. Service Géologique du Maroc.
[17] Lyazidi, M., Eyssautier, L., Marcais, J., Choubert, G. and Faillot P., 1956. Carte géologique de Rich et Boudnib au 1/200 000. Service Géologique du Maroc.
[18] de Vente, J., Poesen, J., Verstraeten, G., Van Rompaey, A. and Govers, G., 2008. Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Global Planetary Change, 60, 393-415.
[19] Alatorre, L.C., Beguerıa, S. and Garcıa-Ruiz, J.M., 2010. Regional scale modeling of hillslope sediment delivery: a case study in Barasona reservoir watershed (Spain) using WATEM/ SEDEM. Journal of Hydrology, 391, 109-123.
[20] Quijano, L., Begueria, S., Gaspar, L. and Navas, A., 2016. Estimating erosion rates using 137Cs measurements and WATEM/SEDEM in a Mediterranean cultivated field. Catena, 138, 38-51.
[21] Verstraeten, G., Prosser, I. P. and Fogarty, P., 2007. Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. Journal of Hydrology, 334, 440-454.
[22] Bezak, N., Rusjan, S., Petan, S., Sodnik, J. and Mikos, M., 2015. Estimation of soil loss by the WATEM/SEDEM model using an automatic parameter estimation procedure. Environmental Earth Sciences, 74(6), 5245-5261.
[23] Borrelli, P., Van Oost, K., Meusburger, K., Alewell, C., Lugato, E. and Panagos, P., 2018. A step towards a holistic assessment of soil degradation in Europe: Coupling on-site erosion with sediment transfer and carbon fluxes. Environmental Research, 161, 291-298.
[24] Konecna, J., Karásek, P., Beitlerová, H., Fučík, P., Kapička, J., Podhrázská, J. and Kvítek, T., 2019. Using WaTEM/SEDEM and HEC-HMS models for the simulation of episodic hydrological and erosion events in a small agricultural catchment, Soil and Water Research, 15, 18-29.
[25] Verstraeten, G., Van Oost, K., Van Rompaey, A., Poesen, J. and Govers, G., 2002. Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use and Management, 18(4), 386-394.
[26] Renard, K.G., Foster, G.R., Weesies, G.A., and Porter, J.P., 1991. RUSLE-revised universal soil loss equation. Journal of Soil and Water Conservation, 46(1), 30-33.
[27] Desmet, P.J.J. and Govers, G., 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5), 427-433.
[28] Govers, G., Vandaele, K., Desmet, P., Poesen, J. and Bunte, K., 1994. The role of tillage in soil redistribution on hillslopes. European Journal of Soil Science, 45(4), 469-478.
[29] van der Knijff, J.M., Jones, R.J.A. and Montanarella, L., 1999. Soil Erosion Risk Assessment in Italy. European Soil Bureau: Joint Research Center of the European Commission.
[30] Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models: Part 1: a discussion of principles. Journal of Hydrology, 10(3), 282-290.
[31] Mohamed, M., Anis, Z. and Imed, F., 2020. Regional-scale modeling of water erosion and sediment yield in a semi-arid context: A case study of Ziz upper watershed in south-eastern Morocco. GEOIT4W-2020: Proceedings of the 4th Edition of International Conference on Geo-IT and Water Resources 2020, Al-Hoceima, Morocco, March 11-12, 2020, http://doi.org/10. 1145/3399205.3399209
[32] Verstraeten, G., 2006. Regional scale modelling of hillslope sediment delivery with SRTM elevation data. Geomorphology, 81, 128-140.
[33] Haregweyen, N., Poesen, J., Verstraeten, G., Govers, G., de Vente, J., Nyssen, J., Deckers, J. and Moeyersons, J., 2013. Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM) in Northern Ethiopia. Land Degradation & Development, 24(2), 188-204.
[34] Syahli, F., 2015. The impact of Land Use Change on Soil Erosion in Serayu Watershed, Case Study Merawu Watershed, Banjarnegara, Central Java. MSc., University of Twente.
[35] Ghorbel, A. and Claude, J., 1977. Mesure de l'envasement dans les retenues de sept barrages en Tunisie: Estimation des transports solides. In: Erosion and Solid Matter Transport in Inland Waters, July 1977, 219-232.