Synthesis of Rare Earth Based Pyrochlore Structured (A2B2O7) Materials for Thermal Barrier Coatings (TBCs) - A Review

Main Article Content

J. Sankar
Suresh Kumar*

Abstract

High temperature application requires protection coatings to ensure the optimal operating cycles to avoid the uncertainty caused by hot gases, foreign contaminates, ambient conditions and other occurrences. In general, protective coating materials can be ceramics, thermally grown oxides, silicates and some rare earth ores. For high-end applications such as gas turbines used in aviation, gas turbines surface are coated with a Thermal Barrier Coating to isolate the components thermally and protect the surfaces. Over the past four decades, those coatings have been employed with the inclusion of Yttrium Stabilised Zirconia (YSZ). The up growing developments on those areas require the coating, which can withstand temperatures above 1200°C. Due to this concern, the alternative to the YSZ based coatings finding has been accelerated. Rare earth oxides with pyrochlore structure ceramics are key interest to provide the coating properties comparatively more than YSZ-based coatings. In this paper, the preparation methods for pyrochlore structured ceramics are discussed. A solid state reaction method widely used for preparing the pyrochlore structure ceramics, but it requires higher temperature and long duration. Wet chemical methods such as precipitation, combustion and hydrothermal techniques produce the pyrochlores at lower temperature comparatively than that of solid state reaction-based methods. In coprecipitation method, intermediate hydrates are reduced into pyrochlores by calcinating at higher elevated temperature. Due to the heat treatment at higher temperature, agglomeration occurs. In the combustion synthesis, fuel-induced exothermic chemical reaction results in porous-structured powders. Upon heat treatment, it results in the porous pyrochlore- structured materials with the agglomeration of particles.  Hydrothermal synthesis shows high energy efficiency, maximum yield, uniform particle size and morphology. It was understood that microwave-assisted hydrothermal synthesis requires shorter reaction time.   


Keywords: thermal barrier coating; solid state reaction; hydrothermal synthesis


*Corresponding author: Tel.: (+91) 9894665963


                                             E-mail: [email protected]

Article Details

Section
Review Ariticle

References

Zhang, J., Guo, X., Jung, Y.G., Li, L. and Knapp, J., 2017. Lanthanum zirconate based thermal barrier coatings: A review. Surface and Coatings Technology, 323, 18-29.

Liu, B., Liu, Y., Zhu, C., Xiang, H., Chen, H., Sun, L., Gao, Y. and Zhou, Y., 2019. Advances on strategies for searching for next generation thermal barrier coating materials. Journal of Materials Science and Technology, 35(5), 833-851.

Schmitt, M.P., Stokes, J.L., Rai, A.K., Schwartz, A.J. and Wolfe, D.E., 2019. Durable aluminate toughened zirconate composite thermal barrier coating (TBC) materials for high temperature operation. Journal of the American Ceramic Society, 102(8), 4781-4793.

Cernuschi, F., Bianchi, P., Leoni, M. and Scardi, P., 1999. Thermal diffusivity/microstructure relationship in Y-PSZ thermal barrier coatings. Journal of Thermal Spray Technology, 8(1), 102-109.

Cao, X.Q., Vassen, R. and Stöver, D., 2004. Ceramic materials for thermal barrier coatings. Journal of the European Ceramic Society, 24(1), 1-10.

Garvie, R.C., 1970. Zirconium dioxide and some of its binary systems. Refractory Materials, 5, 117-166.

Vassen, R., Cao, X., Tietz, F., Kerkhoff, G. and Stoever, D., 1999. La2Zr2O7-a new candidate for thermal barrier coatings. Proceedings of the United Thermal Spray Conference-UTSC’99, DVS-Verlag, Düsseldorf, Germany, 1999, 830-834.

Samsonov, G.V., 1982. The Oxide Handbook. New York: Springer.

Ramaswamy, P., Seetharamu, S., Rao, K.J. and Varma, K.B.R., 1998. Thermal shock characteristics of plasma sprayed mullite coatings. Journal of Thermal Spray Technology, 7(4), 497-504.

Xu, H., Guo, H., Liu, F. and Gong, S., 2000. Development of gradient thermal barrier coatings and their hot-fatigue behavior. Surface and Coatings Technology, 130(1), 133-139.

Warshaw, I. and Roy, R., 1961. Polymorphism of the rare earth sesquioxides1. The Journal of Physical Chemistry, 65(11), 2048-2051.

Chuanxian, D. and Zhaohe, T., 1992. Laboratory report-thermal spraying at the Shanghai Institute of Ceramics. Journal of Thermal Spray Technology, 1(3), 205-209.

Chen, X., Zhao, Y., Fan, X., Liu, Y., Zou, B., Wang, Y., Ma, H. and Cao, X., 2011. Thermal cycling failure of new LaMgAl11O19/YSZ double ceramic top coat thermal barrier coating systems. Surface and Coatings Technology, 205(10), 3293-3300.

Karthik, A., Srither, S.R., Dhineshbabu, N.R., Lenin, N., Arunmetha, S., Manivasakan, P. and Rajendran, V., 2019. Stabilization of tetragonal zirconia in alumina-zirconia and alumina-yttria stabilized zirconia nanocomposites: A comparative structural analysis. Materials Characterization, 158, https://doi.org/10.1016/j.matchar.2019.109964

Zhou, X., Song, W., Yuan, J., Gong, Q., Zhang, H., Cao, X. and Dingwell, D.B., 2020. Thermophysical properties and cyclic lifetime of plasma sprayed SrAl12O19 for thermal barrier coating applications. Journal of the American Ceramic Society, 103, 5599-5611.

Northam, M., 2019. Investigation of PS-PVD and EB-PVD thermal barrier coatings over lifetime using synchrotron X-ray diffraction.

Gan, X., Yu, Z., Yuan, K., Xu, C., Zhang, G., Wang, X., Zhu, L. and Xu, D., 2018. Effects of cerium addition on the microstructure, mechanical properties and thermal conductivity of YSZ fibers. Ceramics International, 44(6), 7077-7083.

Venkadesan, G. and Muthusamy, J., 2019. Experimental investigation of Al2O3/8YSZ and CeO2/8YSZ plasma sprayed thermal barrier coating on diesel engine. Ceramics International, 45(3), 3166-3176.

Keyvani, A., Bahamirian, M. and Kobayashi, A., 2017. Effect of sintering rate on the porous microstructural, mechanical and thermomechanical properties of YSZ and CSZ TBC coatings undergoing thermal cycling. Journal of Alloys and Compounds, 727, 1057-1066.

Anantharaman, A.P. and Dasari, H.P., 2020. Potential of pyrochlore structure materials in solid oxide fuel cell applications. Ceramics International, https://doi.org/10.1016/ j.ceramint.2020.10.012

Cao, X.Q., Vassen, R., Jungen, W., Schwartz, S., Tietz, F. and Stöver, D., 2001. Thermal stability of lanthanum zirconate plasma‐sprayed coating. Journal of the American Ceramic Society, 84(9), 2086-2090.

Lei, M.A., Weimin, M.A., Xudong, S.U.N., Jianan, L.I.U., Lianyong, J.I. and Han, S.O.N.G., 2015. Structure properties and sintering densification of Gd2Zr2O7 nanoparticles prepared via different acid combustion methods. Journal of Rare Earths, 33(2), 195-201.

Mandal, B.P., Shukla, R., Achary, S.N. and Tyagi, A.K., 2010. Crucial role of the reaction conditions in isolating several metastable phases in a Gd− Ce− Zr− O system. Inorganic Chemistry, 49(22), 10415-10421.

Vaßen, R., Jarligo, M.O., Steinke, T., Mack, D.E. and Stöver, D., 2010. Overview on advanced thermal barrier coatings. Surface and Coatings Technology, 205(4), 938-942.

Ma, W., Meng, X., Dong, H., Lun, W., Zheng, X., 2013. Double rare-earth oxides co-doped strontium zirconate as a new thermal barrier coating material. Journal of Thermal Spray Technology, 22, 104-109

Ma, W., Meng, X., Wen, J., Li, E., Bai, Y., Chan, W. and Dong, H., 2019. Aging effect on microstructure and property of strontium zirconate coating co-doped with double rare-earth oxides. Journal of the American Ceramic Society, 102, 2143-2153.

Zhong, X., Zhao, H., Liu, C., Wang, L., Shao, F., Zhou, X., Tao, S. and Ding, C., 2015. Improvement in thermal shock resistance of gadolinium zirconate coating by addition of

nanostructured yttria partially-stabilized zirconia. Ceramics International, 41(6), 7318-7324.

Zhou, D., Mack, D.E., Bakan, E., Mauer, G., Sebold, D., Guillon, O. and Vaßen, R., 2020. Thermal cycling performances of multilayered yttria‐stabilized zirconia/gadolinium zirconate thermal barrier coatings. Journal of the American Ceramic Society, 103(3), 2048-2061.

Lehmann, H., Pitzer, D., Pracht, G., Vassen, R. and Stöver, D., 2003. Thermal conductivity and thermal expansion coefficients of the lanthanum rare‐earth‐element zirconate

system. Journal of the American Ceramic Society, 86(8), 1338-1344.

Zhong, X., Zhao, H., Zhou, X., Liu, C., Wang, L., Shao, F., Yang, K., Tao, S. and Ding, C., 2014. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-ayered thermal barrier coating. Journal of Alloys and Compounds, 593, 50-55.

Ma, W., Lun, W., Dong, H., Wang, L., Song, F. and Zheng, X., 2011. Fundamental physical properties of Ta2O5 and Yb2O3 codoped strontium zirconate for thermal barrier coating

applications. Materials Research Innovations, 15(5), 319-323.

Li, J.Y., Dai, H., Zhong, X.H., Zhang, Y.F., Ma, X.F., Meng, J. and Cao, X.Q., 2008. Lanthanum zirconate ceramic toughened by BaTiO3 secondary phase. Journal of Alloys and Compounds, 452(2), 406-409.

Hu, Q., Zeng, J., Wang, L., Shu, X., Shao, D., Zhang, H. and Lu, X., 2018. Helium ion irradiation effects on neodymium and cerium co-doped Gd2Zr2O7 pyrochlore ceramic. Journal of Rare Earths, 36(4), 398-403.

Mazilin, I.V., Baldaev, L.K., Drobot, D.V., Marchukov, E.Y. and Akhmetgareeva, A.M., 2016. Composition and structure of coatings based on rare-earth zirconates. Inorganic Materials, 52(9), 939-944.

Pasupuleti, K.T., Prasad, G.V., Akhil, M.P., Ramaswamy, P. and Murty, S.N., 2019. Adhesion strength studies on zirconia based pyrochlore and functionally gradient thermal barrier coatings. Materials Today: Proceedings, 19, 568-574.

Wang, Y., Zhang, L., Wu, W. and Yang, J., 2019. Enhancement of thermal properties of ytterbium-cerium oxide by zirconium doping for thermal barrier coatings. Philosophical

Magazine Letters, 99(9), 309-316.

Ma, W., Meng, X., Wen, J., Li, E., Bai, Y., Chen, W. and Dong, H., 2019. Aging effect on microstructure and property of strontium zirconate coating co‐doped with double rare‐earth

oxides. Journal of the American Ceramic Society, 102(4), 2143-2153.

Yang, J., Zhao, M., Zhang, L., Wang, Z. and Pan, W., 2018. Pronounced enhancement of thermal expansion coefficients of rare-earth zirconate by cerium doping. Scripta Materialia, 153, 1-5.

Pasupuleti, K.T., Ghosh, S., Dunna, U.M., Ramaswamy, P. and Murty, S.N., 2019. Influence of atmospheric plasma spray process parameters on crystal and micro structures of pyrochlore phase in rare earth zirconate thermal barrier coatings. Materials Today: Proceedings, 19, 731-736.

Zhang, C., Zhao, J., Yang, L., Zhou, Y., Wang, Q., Chen, H., Yang, G., Gao, Y. and Liu, B., 2020. Preparation and corrosion resistance of nonstoichiometric lanthanum zirconate coatings. Journal of the European Ceramic Society, 40(8), 3122-3128.

Liu, Z.G., Ouyang, J.H., Zhou, Y., Li, J. and Xia, X.L., 2009. Influence of ytterbium-and samarium-oxides codoping on structure and thermal conductivity of zirconate ceramics. Journal of the European Ceramic Society, 29(4), 647-652.

Zhou, D., Mack, D.E., Bakan, E., Mauer, G., Sebold, D., Guillon, O. and Vaßen, R., 2020. Thermal cycling performances of multilayered yttria-stabilized zirconia/gadolinium zirconate thermal barrier coatings. Journal of the American Ceramic Society, 103, 2048-2061.

Gentleman, M.M., and Clarke, D.R., 2005. Luminescence sensing of temperature in pyrochlore zirconate materials for thermal barrier coatings. Surface and Coatings Technology, 200(5-6), 1264-1269.

Torres-Rodriguez, J., Gutierrez-Cano, V., Menelaou, M., Kaštyl, J., Cihlář, J., Tkachenko, S., González, J.A., Kalmár, J., Fábián, I., Lázár, I. and Čelko, L., 2019. Rare-earth zirconate Ln2Zr2O7 (Ln: La, Nd, Gd, and Dy) powders, xerogels, and aerogels: preparation, structure, and properties. Inorganic Chemistry, 58(21), 14467-14477.

Benčina, M. and Valant, M., 2018. Bi2Ti2O7‐based pyrochlore nanoparticles and their superior photocatalytic activity under visible light. Journal of the American Ceramic Society, 101(1), 82-90.

Gupta, S.K., Zuniga, J.P., Ghosh, P.S., Abdou, M. and Mao, Y., 2018. Correlating structure and luminescence properties of undoped and Eu3+-doped La2Hf2O7 nanoparticles prepared with different coprecipitating pH values through experimental and theoretical studies. Inorganic Chemistry, 57, 11815–11830.

Kaliyaperumal, C., Sankarakumar, A., Palanisamy, J. and Paramasivam, T., 2018. Fluorite to pyrochlore phase transformation in nanocrystalline Nd2Zr2O7. Materials Letters, 228, 493-496.

Pokhrel, M., Gupta, S.K., Wahid, K. and Mao, Y., 2019. Pyrochlore rare-earth hafnate RE2Hf2O7 (RE= La and Pr) nanoparticles stabilized by molten-salt synthesis at low temperature. Inorganic Chemistry, 58(2), 1241-1251.

Popov, V.V., Menushenkov, A.P., Ivanov, A.A., Yastrebtsev, A.A., Gaynanov, B.R., Acapito, F. and Puri, A., 2020. A XAFS investigation of amorphous-to-crystalline and fluorite-to-pyrochlore phase transitions in Ln2M2O7 (Ln = Gd, Tb, Dy; M = Ti, Zr). Radiation Physics and Chemistry, 175, 108469.

Wang, Z., Zhu, H., Ai, L., Liu, X., Lv, M., Wang, L., Ma, Z. and Zhang, Z., 2016. Catalytic combustion of soot particulates over rare-earth substituted Ln2Sn2O7 pyrochlores (Ln= La, Nd and Sm). Journal of Colloid and Interface Science, 478, 209-216.

Matovic, B., Maletaskic, J., Zagorac, J., Pavkov, V., Maki, R.S., Yoshida, K. and Yano, T., 2020. Synthesis and characterization of pyrochlore lanthanide (Pr, Sm) zirconate ceramics. Journal of the European Ceramic Society, 40(7), 2652-2657.

Venkatesh, G., Subramanian, R. and Berchmans, L.J., 2019. Phase analysis and microstructural investigations of Ce2Zr2O7 for high-temperature coatings on Ni-base superalloy substrates. High Temperature Materials and Processes, 38(2019), 773-782.

Li, W., Zhang, K., Xie, D., Deng, T., Luo, B., Zhang, H. and Huang, X., 2020. Characterizations of vacuum sintered Gd2Zr2O7 transparent ceramics using combustion synthesized nanopowder. Journal of the European Ceramic Society, 40(4), 1665-1670.

Jeyasingh, T., Saji, S.K. and Wariar, P.R.S., 2017. Synthesis of nanocrystalline Gd2Ti2O7 by combustion process and its structural, optical and dielectric properties. AIP Conference Proceedings, 1859(1), https://doi.org/10.1063/1.4990169

Jeyasingh, T., Saji, S.K., Kavitha, V.T. and Wariar, P.R.S., 2018. Frequency dependent dielectric properties of combustion synthesized Dy2Ti2O7 pyrochlore oxide. AIP Conference Proceedings, 1953(1), https://doi.org/10.1063/1.5032442

Ai, L., Wang, Z., Cui, C., Liu, W., Wang, L., 2018. Catalytic oxidation of soot on a novel active Ca-Co dually-doped lanthanum tin pyrochlore oxide. Materials, 11(5), 653.

Jeyasingh, T., Vindhya, P.S., Saji, S.K., Wariar, P.R.S. and Kavitha, V.T., 2019. Structural and magnetic properties of combustion synthesized A2Ti2O7(A = Gd, Dy and Y) pyrochlore oxides. Bulletin of Materials Science, 42(5), https://doi.org./10.1007/s12034-019-1878-1

Quader, A., Mustafa, G.M., Abbas, S.K., Ahmad, H., Riaz, S., Naseem, S. and Atiq, S., 2020. Efficient energy storage and fast switching capabilities in Nd-substituted La2Sn2O7 pyrochlores. Chemical Engineering Journal, 396, https://doi.org/10.1016/j.cej.2020.125198

Zhang, K.Q., Liu, C.G., Li, F.Z., Yang, D.Y., Chen, C., Wu, R.D., Peng, S.M., Li, Y.H. and Zhang, H.B., 2016. Study on the crystal structure of (Gd2−xCex)Ti2O7 (0≤ x≤ 0.8) pyrochlore. Advances in Applied Ceramics, 115(7), 411-416.

Wang, Q., Cheng, X., Li, J. and Jin, H., 2016. Hydrothermal synthesis and photocatalytic properties of pyrochlore Sm2Zr2O7 nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 321, 48-54.

Hongming, Z. and Danqing, Y., 2008. Effect of rare earth doping on thermo-physical properties of lanthanum zirconate ceramic for thermal barrier coatings. Journal of Rare Earths, 26, 770–774.

Huo, Y., Qin, N., Liao, C., Feng, H., Gu, Y. and Cheng, H., 2019. Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes. Journal of Central South University, 26(6), 1416-1425.

Gadipelly, T., Dasgupta, A., Ghosh, C., Krupa, V., Sornadurai, D., Sahu, B.K. and Dhara, S., 2020. Synthesis and structural characterisation of Y2Ti2O7 using microwave hydrothermal route. Journal of Alloys and Compounds, 814, https://doi.org/10.1016/j.jall com.2019.152273

Sanjeewa, L.D., Ross, K.A., Sarkis, C.L., Nair, H.S., McMillen, C.D. and Kolis, J.W., 2018. Single crystals of cubic rare-earth pyrochlore germanates: RE2Ge2O7 (RE= Yb and Lu) grown by a high-temperature hydrothermal technique. Inorganic Chemistry, 57(20), 12456-12460.

Trujillano, R., Martín, J.A. and Rives, V., 2016. Hydrothermal synthesis of Sm2Sn2O7 pyrochlore accelerated by microwave irradiation. A comparison with the solid state synthesis method. Ceramics International, 42(14), 15950-15954.

Verma, S., Rani, S. and Kumar, S., 2018. Crystal structure, morphology and optical behaviour of sol-gel derived pyrochlore rare earth titanates RE2Ti2O7 (RE=Dy, Sm). Journal of Alloys and Compounds, 750, 902-910.

Wang, S., Li, W., Wang, S., Zhang, J. and Chen, Z., 2016. Deposition of SiC/La2Zr2O7 multi-component coating on C/SiC substrate by combining sol-gel process and slurry. Surface and Coatings Technology, 302, 383-388.

Xia, J., Lei, L., Dai, X., Ling, J., Li, Y. and Xu, S., 2018. Excitation-dependent multi-color emissions in Yb/Er/Eu: Gd2Ti2O7 pyrochlore for anti-counterfeiting. Materials Research Bulletin, 107, 213-217.