Medium Effect on Antagonistic Activity and Detection of Nonribosomal Peptide Synthetase Genes in Epiphytic Bacillus Strains

Main Article Content

Suchitra Apimeteethamrong
Chokchai Kittiwongwattana*

Abstract

The biosynthesis of non-ribosomal peptides (NRPs) in biocontrol bacteria was one of the major antagonistic mechanisms for their application in agriculture. Bacillus spp. 1021, 2211 and 3210 were previously shown to inhibit mycelial growth of the leaf blast fungus Pyricularia oryzae. Here, we aimed to further study the antagonistic mechanism in those three strains. Cell-free supernatants obtained from bacteria grown in potato dextrose broth (PDB) exhibited a higher degree of inhibition against P. oryzae when compared to those obtained from nutrient broth (NB). This indicated the effect of culture media in the production of extracellular antibiotic compounds by these strains. Phylogenetic analysis of their partial 16S rRNA gene sequences indicated a close relationship between the three strains and Bacillus siamensis KCTC13613T, Bacillus amyloliquefaciens DSM7T and Bacillus velezensis CR-502T. Complete genome sequences of these Bacillus species were analyzed on the antiSMASH server to identify the presence of NRP biosynthesis gene clusters. Non-degenerate primers were designed for the detection of the core biosynthesis genes for surfactin (srfAA), fengycin (fenC) and bacillibactin (dhbF). All three genes were amplified in strains 1021 and 2211, while only srfAA and dhbF were detected in strain 3210. Phylogenetic analysis of the deduced amino acid sequences indicated that the sequences of strain 1021 were distinct from those of strains 2211 and 3210. This result indirectly suggests the possibility of NRP production as the antagonistic mechanism of these three strains.


 


Keywords: Bacillus; nonribosomal peptides; nonribosomal peptide synthetases; Pyricularia oryzae


*Corresponding author: Tel.: (+66) 023298400 Fax: (+66) 3298427


                                             E-mail: [email protected]

Article Details

Section
Original Research Articles

References

Sumi, D., Yang, B.W., Yeo, I.C. and Hahmn, Y.T., 2015. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Canadian Journal of Microbiology, 61, 93-103.

Zhao Z., Wang, Q., Wang, K., Brian, K. Liu, C. and Gu, Y., 2010. Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresource Technology, 101(1), 292-297.

Benitez, L.B., Velho, R.V., Lisboa, M.P., Medina, L.F. and Brandelli, A., 2010. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. Journal of Microbiology, 48, 791-797.

Yaseen Y., Diop, A., Gancel, F., Béchet, M., Jacques, P. and Drider, D., 2018. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis. Archives of Microbiology, 200(5), 783-791.

Reimer, J.M., Haque, A.S., Tarry, M.J. and Schmeing, T.M., 2018. Piecing together nonribosomal peptide synthesis. Current Opinion in Structural Biology, 49, 104-113.

Challis, G.L. and Naismith, J.H., 2004. Structural aspects of non-ribosomal peptide biosynthesis. Current Opinion in Structural Biology, 14, 748-756.

Aleti, G., Sessitsch, A. and Brader, G., 2015. Genome mining: Prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Computational and Structural Biotechnology Journal, 13, 192-203.

Ayuso-Sacido, A. and Geniiloud, O., 2005. New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbial Ecology, 49, 10-24.

Jasim, B., Mathew, J. and Radhakrishnan, E.K., 2016. Identification of a novel endophytic Bacillus sp. from Capsicum annuum with highly efficient and broad spectrum plant probiotic effect. Journal of Applied Microbiology, 121(4), 1079-1094.

Kamedi, J., Imanparast, S. and Mohammadipanah, F., 2015. Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites. Iran Journal of Microbiology, 7, 23-30.

Mora, I., Jordi, C. and Montesinos, E., 2011. Antimicrobial peptide genes in Bacillus strains from plant environments. International Microbiology, 14, 213-223.

Rokni-Zadeh, H., Mangas-Losada, A. and De Mot, R., 2011. PCR detection of novel non-ribosomal peptide synthetase genes in lipopeptide-producing Pseudomonas. Microbial Ecology, 62, 941-947.

Apimeteethamrong, S. and Kittiwongwattana, C., 2019. Diversity and plant growth promoting activities of rice epiphytic bacteria. Current Applied Science and Technology, 19, 66-79.

Hongoh, Y., Yuzawa, H., Ohkuma, M. and Kudo, T., 2003. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiology Letters, 221, 299-304.

Mao, D., Zhou, Q., Chen, C. and Quan, Z., 2012. Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiology, 12, 66.

Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J., 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1613-1617.

Thompson, J.D., Higgins, D.G. and Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680.

Saitou, N. and Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.

Fitch, W.M., 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology, 20, 406-416.

Felsenstein, J., 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368-376.

Kumar, S., Stecher, G. and Tamura, K., 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874.

Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783-791.

Blin, K., Wolf, T., Chevrette, M.G., Lu, X., Schwalen, C.J., Kautsar, S.A., Suarez Duran, H.G., de Los Santos, E.L.C., Kim, H.U., Nave, M., Dickschat, J.S., Mitchell, D.A., Shelest, E., Breitling, R., Takano, E., Lee, S.Y., Weber, T. and Medema, M.H., 2017. AntiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Research, 45(W1), W36-W41.

Chojnacki, S., Cowley, A., Lee, J., Foix, A., and Lopez, R., 2017. Programmatic access to bioinformatics tools from EMBL-EBI update. Europe PMC, 45(W1), W550-W553.

Munimbazi, C. and Bullerman, L.B., 1998. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. Journal of Applied Microbiology, 84, 959-968.

Sun, D., Liao, J., Sun, L., Wang, Y., Liu, Y, Deng, Q., Zhang, N., Xu, D., Fang, Z., Wang, W. and Gooneratne, R., 2019. Effect of media and fermentation conditions on surfactin and iturin homologues produced by Bacillus natto NT-6: LC-MS analysis. AMB Express, 9, 120, https://doi.org/10.1186/s13568-019-0845-y

Xu, W.F., Ren, H.S., Ou, T., Lei, T., Wei, J.H., Huang, C., Li, T., Strobel, G., Zhou, Z. and Xie, J., 2019. Genomic and functional characterization of the endophytic Bacillus subtilis 7PJ-16 strain, a potential biocontrol agent of mulberry fruit sclerotiniose. Microbial Ecology, 77(3), 651-663.

Xu, B.H., Lu, Y.Q., Ye, Z.W., Zheng, Q.W., Wei, T., Lin, J.F. and Guo, L.Q., 2018. Genomics-guided discovery and structure identification of cyclic lipopeptides from the Bacillus siamensis JFL15. PLoS ONE, 13(8), e0202893, https://doi.org/10.1371/journal. pone.0202893

Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A., 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology, 91(2), 181-187.

Lim, S.M., Yoon, M.Y., Choi, G.J., Choi, Y.H., Jang, K.S., Shin, T.S., Park, H.W., Yu, N.H., Kim, Y.H. and Kim, J.C., 2017. Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. The Plant Pathology Journal, 33(5), 488-498.

Palazzini, J.M., Dunlap, C.A., Bowman, M.J. and Chulze, S.N., 2016. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiological Research, 192, 30-36.

Jiang, C.H., Liao, M.J., Wang, H.K., Zheng, M.Z., Xu, J.J. and Guo, J.H., 2018. Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biological Control, 126, 147-157.

Yu, G.Y., Sinclair, J.B., Hartman, G.L. and Bertagnolli, B.L., 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology Biochemistry, 34, 955-963.

Kim, Y.G., Kang, H.K., Kwon, K.D., Seo, C.H., Lee, H.B. and Park, Y., 2015. Antagonistic activities of novel peptides from Bacillus amyloliquefaciens PT14 against Fusarium solani and Fusarium oxysporum. Journal of Agricultural and Food Chemistry, 63, 10380-10387.

Abdallah, D.B., Frikha-Gargouri, O. and Tounsi, S., 2018. Rizhospheric competence, plant growth promotion and biocontrol efficacy of Bacillus amyloliquefaciens subsp. plantarum strain 32a. Biological Control, 124, 61-67.

Lin, C., Tsai, C.H., Chen, P., Wu, C.Y., Chang, W.L., Yang, Y.L. and Chen, Y.L., 2018. Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS ONE, 13(4), e0196520, https://doi.org/10.1371/journal.pone.0196520

Chen, L., Heng, J., Qin, S. and Bian, K., 2018. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. PloS ONE, 13(6), e0198560, https://doi.org/10.1371/journal.pone.0198560

Plaza, G., Chojniak, J., Rudnicka, K., Paraszkiewicz, K. and Bernat, P., 2015. Detection of biosurfactants in Bacillus species: genes and products identification. Journal of Applied Microbiology. 119, 1023-1034.

Zalila-Kolsi, I., Mahmoud, A.B., Ali, H., Sellami, S., Nasfo, Z., Tounsi, S. and Jamousssi, K., 2016. Antagonistic effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. Durum). Microbiological Research, 192, 149-158

Lim, J.H., Ahn, C.H., Jeong, H.Y., Kim, Y.H. and Kim, S.D., 2011. Genetic monitoring of multi-functional plant growth promoting rhizobacteria Bacillus subtilis AH18 and Bacillus licheniformis K11 by multiplex and real-time polymerase chain reaction in a pepper farming field. Environmental Science, 54, 221-228.

Tapi, A., Chollet-Imbert, M., Scherens, B. and Jacques, P., 2010. New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Applied Microbiology and Biotechnology, 85, 1521-1531.

Abderrahmani, A., Tapi, A., Nateche, F., Chollet, M., Leclère, V., Wathelet, B., Hacene, H., and Jacques, P., 2011. Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Applied Microbiology and Biotechnology, 92, 571-581.

Almoneafy, A.A., Kakar, K.U., Nawaz, Z., Li, B., Alisaand, M., Chun-lan, Y. and Xie, G., 2014. Tomato plant growth promotion and antibacterial related-mechanisms of four rhizobacterial Bacillus strains against Ralstonia solanacearum. Symbiosis, 63, 59-70.

Harwood, C.R., Mouillon, J.M., Pohl, S. and Arnau, J., 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews, 42, 721-738.