PMMA/High-k Self-assembled TiO2/PMMA Multi-layer Gate Dielectric for P3HT Organic Field Effect Transistors

Main Article Content

Kroekchai Inpor
Nongluck Houngkamhang*
Chanchana Thanachayanont
Seeroong Prichanont
Navaphun Kayunkid

Abstract

In this work, a multi-layer structure of poly(methyl methacrylate)/ titanium dioxide/poly(methyl methacrylate) (PMMA/TiO₂ /PMMA; PTP) was proposed as a top-gate insulator for P3HT-based organic field-effect transistors (OFETs). Adding a TiO₂ interlayer as a high dielectric constant (high-k) material into PMMA film enables the modification of the dielectric constant of the multi-layers PTP film. The content of TiO₂ in the PTP film, which can be varied by changing the number of soaking cycles in TiO₂ solution, plays a crucial rule in modifying the dielectric constant of the PTP film. The higher the TiO₂ content used in the PTP film, the higher the dielectric constant of PTP film can be obtained. However, using high TiO₂ content led to a reduction in the dielectric constant of the PTP film due to leakage current induced by the agglomeration of TiO₂. The utilization of the top-gate insulator containing TiO₂ significantly enhanced several P3HT-OFETs characteristics, e.g., an increase in the Ion/Ioff ratio, and a decrease in the threshold voltage. However, the use of the PTP top-gate insulator with a high content of TiO₂ resulted in regressions in the OFETs characteristics, such as a decrease in carrier mobility and reduction in the Ion/Ioff ratio. OFETs operating at the optimum conditions of the PTP gate-insulator, with PTP thickness of 225 nm and RMS roughness of 20.0 nm, provided a dielectric constant of 7.13, a threshold voltage of -8.49 V, a saturation mobility of 2.2× 10-4 cm²V-1s-1, Ion/Ioff ratio of 37.9, and a subthreshold slope of 0.39 V/decade.


Keywords: organics field-effect transistors; dielectric constant; TiO2; PMMA; P3HT


*Corresponding author: Tel.: (+66) 2 329 8000 


                                             Fax: (+66) 2 329 8265                                      


                                             E-mail: [email protected]

Article Details

Section
Original Research Articles

References

Torsi, L., Dodabalapur, A., Rothberg, L.J., Fung A.W.P. and Katz, H.E., 1996. Intrinsic transport properties and performance limits of organic field-effect transistors. Science, 272, 1462-1464.

Koutsiakia, C., Kaimakamisa, T., Zachariadisa, A., Papamichaila, A., Kamarakia, C., Fachourib S., Gravalidisa, C., Laskarakisa, A. and Logothetidisa, S., 2019. Efficient combination of roll-to-roll compatible techniques towards the large area deposition of a polymer dielectric film and the solution-processing of an organic semiconductor for the field-effect transistors fabrication on plastic substrate. Organic Electronics, 73, 231-239.

Zschieschang, U., Ante, F., Yamamoto, T., Takimiya, K., Kuwabara, H., Ikeda, M., Sekitani, T., Someya, T., Kern, K. and Klauk, H., 2010. Flexible low-voltage organic transistors and circuit based on a high-mobility organic semiconductor with good air stability. Advanced Materials, 22, 982-985.

Ismail, L.N., Samsul, S., Musa, M.Z. and Norsabrina, S., 2018. Fabrication of p-type organic field effect transistor using PMMA:TiO2 as nanocomposite dielectric layer. IOP Conference Series: Materials Science and Engineering, 340(1), 012005, https://doi.org/10.1088/1757-899X/340/1/012005.

Deman, A.L. and Tardy, J., 2006. Stability of pentacene organic field effect transistors with a low-k polymer/high-k oxide two-layer gate dielectric. Materials Science and Engineering: C, 26, 421-426.

Noh, Y.-Y. and Sirringhaus, H., 2009. Ultra-thin polymer gate dielectrics for top-gate polymer field effect transistors. Organic Electronics, 10, 174-180.

Facchetti, A., Yoon, M. and Marks, T.J., 2005. Gate dielectrics for organic field effect transistors: new opportunities for organic electronics. Advanced Materials, 17, 1705-1725.

Herlogsson, L., Crispin, X., Robinson, N.D., Sandberg, M., Hagel, O., Gustafsson, G. and Berggren, M., 2007. Low-voltage polymer field-effect transistors gated via a proton conductor. Advanced Materials, 19, 97-101.

Yim, K., Yong, Y., Lee, J., Lee, K., Nahm, H.H., Yoo, J., Lee, C., Hwang, C.S. and Han, S., 2015. Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations. NPG Asia Materials, 7(6), e190, https://doi.org/10.1038/am.2015.57.

Veres, J., Ogier, S. and Lloyd, G., 2004. Gate insulator in organic field-effect transistors. Chemistry of Materials, 16, 4543-4555.

Chen, F., Chu, C., He, J., Yang, Y. and Lin, J., 2004. Organic thin-film transistors with nanocomposite dielectric gate insulator. Applied Physics Letters, 85, 3295-3297.

Chen, F., Chuang, C., Lin, Y., Kung, L., Chen, T. and Shieh, H. D., 2006. Low-voltage organic thin-film transistors with polymeric nanocomposite dielectrics. Organic Electronics, 7, 435-439.

Yang, F., Chang, K., Hsu, M. and Liu, C., 2008. Low-operative-voltage polymer transistor with solution processed low-k polymer/high-k metal-oxide bilayer insulators. Organic Electronics, 9, 925-929.

Yang, F., Hsu, M., Hwang, G. and Chang, K., 2010. High-performance poly(3-hexylthiophene) top-gate transistors incorporating TiO2 nanocomposite dielectrics. Organic Electronics, 11, 81-88.

Wypych, A., Bobowska, I., Tracz, M., Opasinska, A., Kadlubowski, S., Krzywania-Kaliszewska, A., Grobelny, J. and Wojciechowski, P., 2014. Dielectric properties and characterization of titanium dioxide obtained by different chemistry methods. Journal of Nanomaterials, 2014, https://doi.org/10.1155/2014/124814.

Feng, Y., Yin, J., Chen, M., Song, M., Su, B. and Lei, Q., 2013. Effect of nano-TiO2 on the polarization process of polyimide-TiO2 composites. Materials Letters, 96, 113-116.

Abouelhassan, S., 2010. Investigation of the dielectric properties and thermodynamic parameters of (50 − x) P2O5 -xAgI -40Ag2O -10Fe2O3 ionic glass. Chinese Journal of Physics, 48, 650-661.

Harun, M. H., Saion, E., Kassim, A., Mahmud, E., Hussain, M. Y. and Mustafa, I. S., 2009. Dielectric Properties of Poly (vinyl alcohol)/polypyrrole composite polymer films. Journal for the Advancement of Science and Arts, 1, 9-16.

Sung, S., Park, S., Lee, W., Son, J., Kim, C. and Yoon, M., 2015. Low-voltage flexible organic electronics based on high performance sol-gel titanium dioxide dielectric. ACS Applied Materials and Interfaces, 7, 7456-7461.

Hoshino, S., Yoshida, M., Uemura, S., Kodzasa, T., Takada, N., Kamata, T. and Yase, K., 2004. Influence of moisture on device characteristics of polythiophene-based field-effect transistors. Journal of Applied Physics, 95, 5088-5093.

Chabinyc, M.L., Endicott, F., Vogt, B.D., DeLongchamp, D.M., Lin, E.K., Wu, Y., Liu, P. and Ong, B.S., 2006. Effects of humidity on unencapsulated poly(thiophene) thin-film transistors. Applied Physics Letters, 88(11), 113514, https://doi.org/10.1063/1.2181206.

Horowitz, G., Hajlaoui, R., Bouchriha, Bourguiga, H.R. and Hajlaoui, M., 1998. The concept of “Threshold-Voltage” in organic field-effect transistors. Advanced Materials, 10, 923-927.

Ismail, L.N., Zulkefle, H., Sauki, N.S.A.M., Zain, A., Herman, S.H. and Mahmood, M.R., 2013. Characterization of metal-insulator-semiconductor capacitor with poly(methyl methacrylate): titanium dioxide as insulator. Japanese Journal of Applied Physics, 52(6S), https://doi.org/10.7567/JJAP.52.06GG02.