Personal Re-identification Using Incremental Dynamic Time Warping Algorithm and Body Measurement

Main Article Content

Wisrut Kwankhoom*
Paisarn Muneesawang

Abstract

Identification of unique individuals is being extensively used in security and surveillance. Gait recognition has caught the attention of computer vision researchers. This interest has been stimulated by the development of systems to automatically identify individuals. This paper presents a gait gesture recognition algorithm, using Incremental Dynamic Time Warping (IDTW) with a body measurement technique that identifies personal gait patterns recorded on video via Microsoft’s Kinect® 3D depth-sensing camera. We used the height of a person to further clarify the recognition and accurate identification of the individual. The initial results demonstrated 81.25% accuracy with our gait and height recognition algorithm. This recognition technique is ideal for high-level security requirements.


Keywords: Biometrics; Personal re-identification; Gait recognition; IDTW; Kinect sensor


*Corresponding author: Tel.: (+66) 862020656 Fax: (+66) 55964005


                                             E-mail: wisrutk57@nu.ac.th

Article Details

Section
Original Research Articles

References

Wang, J., Chen, Y., Hao, S., Peng, X. and Hu, L., 2019. Deep learning for sensor-based activity recognition: A survey. Pattern Recognition Letters, 119, 3-11, DOI: 10.1016/j.patrec.2018.02.010.

Sun, F., Zang, W., Gravina, R., Fortino, G. and Li, Y., 2020. Gait-based identification for elderly users in wearable healthcare systems. Information Fusion, 53, 134-144.

Aggarwal, H. and Vishwakarma, D.K., 2017. Covariate conscious approach for Gait recognition based upon Zernike moment invariants. IEEE Transactions on Cognitive and Developmental Systems. 10(2), 397-407, DOI: 10.1109/TCDS.2017.2658674.

Lee, L. and Grimson, W.E.L, 2002. Gait analysis for recognition and classification. Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, Washington, DC, USA, May 21-21, 2002, pp. 155-162.

Ekinci, M.and Aykut, M, 2010. Improved gait recognition by multiple-projections normalization. Machine Vision and Applications, 21(2), 143-161, DOI: 10.1007/s00138-008-0144-0.

Toebes, M.J., Hoozemans, M.J., Furrer, R., Dekker, J. and van Dieën, J.H., 2012. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait and Posture, 36(3), 527-531, DOI: 10.1016/j.gaitpost.2012.05.016.

Thang, H.M., Viet, V.Q., Thuc, N.D. and Choi, D., 2012. Gait identification using accelerometer on mobile phone. 2012. International Conference on Control, Automation and Information Sciences (ICCAIS), Saigon, Vietnam, November 26-29, 2012, pp. 344-348.

Pang, X. and Liang, B., 2019. Motion recognition based on Kinect for human-computer intelligent interaction. Journal of Physics: Conference Series, 1187(3), DOI: 10.1088/1742-6596/1187/3/032028.

Alabbasi, H., Gradinaru, A., Moldoveanu, F. and Moldoveanu, A., 2015. Human motion tracking and evaluation using Kinect V2 sensor. 2015 E-Health and Bioengineering Conference (EHB), Iasi, Romania, November 19-21, 2015, pp. 1-4.

Jhapate, M., Choudhary, L. and Pippal, R.S., 2015. A review on triangle based techniques in biometric Gait recognition. International Journal of Computer Applications, 121(7), 6-9, DOI: 10.5120/21550-4571.

Gangotia, P., Shrivastava, G. and Singh, J.P., 2014. An approach of human identification based on gait. International Journal of Computer Applications, 93(1), 33-36.

Ahuja, V. and Mathew, R., 2019. Human Gait recognition (analysis and classification). Proceeding of the International Conference on Computer Networks, Big Data and IoT, Madurai, India, December 19-20, 2019, pp. 325-332.

Bari, A.H. and Gavrilova, M.L., 2019. Artificial neural network based gait recognition using kinect sensor. IEEE Access, 7, 162708-162722, DOI: 10.1109/ACCESS.2019.2952065.

Kwankhoom, W. and Muneesawang, P., 2017. Person re-identification using 3D data analysis method and Kinect sensor. Journal of Telecommunication, Electronic and Computer Engineering, 9(2-5), 151-154.

Kyan, M., Sun, G., Li, H., Zhong, L., Muneesawang, P., Don,g N., Elder, B. and Guan, L., 2015. An approach to ballet dance training through MS Kinect and visualization in a CAVE virtual reality environment. ACM Transactions on Intelligent Systems and Technology, 6(2), 1-37, DOI: 10.1145/2735951.

Kwankhoom, W. and Muneesawang, P., 2016. Recognition of standard Thai traditional dance through 3D data analysis. Naresuan University Engineering Journal, 11(2), 75-84.

Kwankhoom, W. and Muneesawang, P., 2017. An incremental dynamic time warping for person re-identification. 2017 14th International Joint Conference on Computer Science and Software Engineering, Nakhon Si Thammarat, Thailand, July 12-14, 2017, pp. 1-5.

Rahman, M.W. and Gavrilova, M.L., 2017. Kinect gait skeletal joint feature-based person identification. 2017 IEEE 16th International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC). Oxford, UK, July 26-28, 2017, pp. 423-430.

Ahmed, M.H., 2016. Kinect-based human gait recognition using static and dynamic features. International Journal of Computer Science and Information Security, 14(12), 425-431.

Shen, W., Deng, K., Bai, X., Leyvand, T., Guo, B. and Tu, Z., 2013. Exemplar-based human action pose correction. IEEE Transactions on Cybernetics, 44(7), 1053-1066, DOI: 10.1109/ TCYB.2013.2279071.

Rallis, I., Protopapadakis, E., Voulodimos, A., Doulamis, N., Doulamis, A. and Bardis, G., 2019. Choreographic pattern analysis from heterogeneous motion capture systems using dynamic time warping. Technologies, 7(3), DOI: 10.3390/technologies7030056.

Khan, N.M., Lin, S., Guan, L. and Guo, B., 2014. A visual evaluation framework for in-home physical rehabilitation. 2014 IEEE International Symposium on Multimedia, Taichung, Taiwan, December 10-12, 2014, pp. 237-240.

Berndt, D.J. and Clifford, J., 1994. Using dynamic time warping to find patterns in time series. KDD Workshop, 10(16), 359-370.

Folgado, D., Barandas, M., Matias, R., Martins, R., Carvalho, M. and Gamboa, H., 2018. Time alignment measurement for time series. Pattern Recognition, 81, 268-279.

Adikari, A.M.S.B., Ganegoda, N.G.C. and Wanniarachchi, W.K.I.L., 2017. Non-contact human body parameter measurement based on kinect sensor. IOSR Journal of Computer Engineering (IOSR-JCE), 19(3), 80-85.

Cardarilli, G.C., Nunzio L.D., Fazzolari, R., Nannarelli, A., Re, M. and Spanò, S., 2019. N-dimensional approximation of Euclidean distance. IEEE Transactions on Circuits and Systems II: Express Briefs, 67(3), 565-569, DOI: 10.1109/TCSII.2019.2919545.

Keogh, E. and Ratanamahatana, C.A., 2005. Exact indexing of dynamic time warping. Knowledge and Information Systems, 7(3), 358-386, DOI: 10.1007/s10115-004-0154-9.