Development of Rat Meat Detection Using Mt-atp6 Rattus norvegicus Gene Genetic Marker

Main Article Content

Maria Sihotang*
Alfi Sophian
Maria Purba
Yulin Wilasti

Abstract

An empirical test using the real-time PCR method to detect food contamination with rat meat (Rattus norvegicus) was conducted. The aims of this study was to provide information on new genetic markers that can be used to detect rat DNA. Detection of rat DNA in meatballs using the genetic marker of the Mt-atp6 (mitochondrial encoded ATP synthase membrane subunit 6) Rattus norvegicus gene was carried out using meatballs containing rat meat. Primers and probes were designed using Primer3Plus and then analyzed for in silico specificity using Primer-BLAST and Nucleotide-BLAST. Forward primer (5'-ACACCA AAAGGACGAACCTG-3'), reverse primer (5'- AGAATTACGGCTCCT GCTCA-3'), and probe (5'-[VIC]-TTCTAGGGCTTCTTCCCCAT-[QSY]-3') with a target size of 161 bp, were successfully designed. The results of empirical validation with laboratory experiments showed that the primer and probe pair can detect Rattus norvegicus specifically.


 


Keywords: rat; Rattus norvegicus; detection; Mt-atp6; real-time PCR


*Corresponding author: Tel.: (+62) 81343090080


                                             E-mail: maria.arieni@pom.go.id

Article Details

Section
Original Research Articles

References

Purnomo, H. and Rahardiyan, D., 2008. Indonesian traditional meatball. International Food Research Journal, 15(2), 101-108.

Suryawan, G.Y., Suardana, I.W. and Wandia, I.N., 2020. Sensitivity of polymerase chain reaction in the detection of rat meat adulteration of beef meatballs in Indonesia. Veterinary World, 13(5), 905-908, DOI: 10.14202/vetworld.2020.905-908.

LPPOM MUI, 2020. MUI Menjawab berbagai hal tentang halal. Jurnal Halal, 144/2020, 8-10. (in Indonesian)

Bonwitt, J., Kelly, A.H., Ansumana, R., Agbla, S., Sahr, F., Saez, A., Borchert, M., Kock, R. and Fichet-Calvet, E., 2016. Rat-atouille: A mixed method study to characterize rodent hunting and consumption in the context of Lassa fever. Ecohealth, 13(2), 234-247, DOI: 10.1007/s10393-016-1098-8.

Pankovics, P., Boros, A., László, Z., Szekeres, S., Földvári, G., Altan, E., Delwart, E. and Reuter, G., 2021. Genome characterization, prevalence and tissue distribution of astrovirus, hepevirus and norovirus among wild and laboratory rats (Rattus norvegicus) and mice (Mus musculus) in Hungary. Infection, Genetics and Evolution, 93, DOI: 10.1016/j.meegid. 2021.104942.

Centers for Disease Control and Prevention, 2017. Diseases Directly Transmitted by Rodents. [online] Available at: https://www.cdc.gov/rodents/diseases/direct.html.

Nwonwu, E., Alo, C., Una, A.F., Madubueze, U.C., Eze, I., Eze, N.C., Ogbonnaya, L.U. and Akamike, I.C., 2018. Knowledge of Lassa fever and its determinants among traders in Izzi community in South-East Nigeria. Archives of Current Research International, 13(4), 1-9, DOI: 10.9734/acri/2018/39904.

Rahmania, H., Sudjadi and Rohman, A., 2015. The employment of FTIR spectroscopy in combination with chemometrics for analysis of rat meat in meatball formulation. Meat Science, 100, 301-305, DOI: 10.1016/j.meatsci.2014.10.028.

Nuraini, H., Primasari, A., Andreas, E. and Sumantri, C., 2012. The use of cytochrome b gene as a specific marker of the rat meat (Rattus norvegicus) on meat and meat products. Media Peternakan Fakultas Peternakan Institut Pertanian Bogor, 35(1), 15-20, DOI: 10.5398/medpet.2012.35.1.15.

Ahamad, M.N.U., Ali, M.E., Hossain, M.A.M., Asing, A., Sultana, S. and Jahurul, M.H.A., 2017. Multiplex PCR assay discriminates rabbit, rat and squirrel meat in food chain. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 34(12), 2043-2057, DOI: 10.1080/19440049.2017.1359752.

Ahamad, M.N.U., Hossain, M.A.M., Uddin, S.M.K., Sultana, S., Nizar, N.N.A., Bonny, S.Q., Johan, M.R. and Ali, M.E., 2019. Tetraplex real-time PCR with TaqMan probes for discriminatory detection of cat, rabbit, rat and squirrel DNA in food products. European Food Research and Technology, 245(10), 2183-2194, DOI: 10.1007/s00217-019-03326-9.

Cahyadi, M., Wibowo, T., Pramono, A. and Abdurrahman, Z.H., 2020. A novel multiplex-PCR assay to detect three non-halal meats contained in meatball using mitochondrial 12s rRNA gene. Food Science of Animal Resources, 40(4), 628-635, DOI: 10.5851/kosfa. 2020.e40.

Aminah, A., Ramadini, R. and Naid, T., 2019. Analisis Cemaran DNA Tikus pada Bakso Daging Sapi yang Beredar di Makassar dengan Metode Polymerase Chain Reaction (PCR). Jurnal Farmasi Galenika (Galenika Journal of Pharmacy) (e-Journal), 5(1), 93-100, DOI: 10.22487/j24428744.2019.v5.i1.12036.

Primasari, A., 2011. Sensitivitas Gen Sitokrom B (Cyt b) Sebagai Marka Spesifik pada Genus Rattus dan Mus untuk Menjamin Keamanan Pangan. Magister. Bogor Agricultural University, Indonesia. (in Indonesian)

Widyasari, Y.I., Sudjadi and Rohman, A., 2015. Detection of rat meat adulteration in meat ball formulations employing real time PCR. Asian Journal of Animal Sciences, 9(6), 460-465, DOI: 10.3923/ajas.2015.460.465.

MedlinePlus, 2020. MT-ATP6 gene. NIH, 1-5. [online] Available at: https://medlineplus.gov/download/genetics/gene/mt-atp6.pdf.

Attanoraks, S., Thamchaipenet, A., Piamsa-Nga, P. and Soonthornphisaj, N., 2006. Consensus selection algorithm for automatic primer design system. KMITL Science Journal, 6, 232-240.

Suparman, S., 2016. Desain primer PCR secara in silico untuk amplifikasi gen COI pada Kupu-Kupu Papilio Ulysses Linnaeus dari Pulau Bacan. Jurnal Pendidikan Matematika dan IPA, 7(1), 14-24, DOI: 10.26418/jpmipa.v7i1.17341.

VanGuilder, H.D., Vrana, K.E. and Freeman, W.M., 2008. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques, 44(5), 619-626, DOI: 10.2144/000112776.

Herrero, B., Madriñán, M., Vieites, J.M. and Espiñeira, M., 2010. Authentication of atlantic cod (Gadus morhua) using real time PCR. Journal of Agricultural and Food Chemistry, 58(8), 4794-4799, DOI: 10.1021/jf904018h.

Bustin, S., and Huggett, J., 2017. qPCR primer design revisited. Biomolecular Detection and Quantification, 14, 19-28, DOI: 10.1016/j.bdq.2017.11.001.

Hung, J.-H. and Weng, Z., 2016. Designing polymerase chain reaction primers using Primer3Plus. Cold Spring Harbor Protocols, 2016(9), 821-826, DOI: 10.1101/pdb.prot 093096.

Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S. and Madden, T.L., 2012. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics, 13, DOI: 10.1186/1471-2105-13-134.

Roslan, H.A., Hossain, M.A., Sing, N.N. and Husaini, A., 2020. Sago palm genome size estimation via real-time quantitative PCR. Current Applied Science and Technology, 20(2), 208-216, DOI: 10.14456/cast.2020.10.

Shen, Z., Qu, W., Wang, W., Lu, Y., Wu, Y., Li, Z., Hang, X., Wang, X., Zhao, D. and Zhang, C., 2010. MPprimer: A program for reliable multiplex PCR primer design. BMC Bioinformatics, 11, DOI: 10.1186/1471-2105-11-143.

Rodríguez, A., Rodríguez, M., Córdoba, J.J. and Andrade, M.J., 2015. Design of primers and probes for quantitative real-ime PCR methods. Methods in Molecular Biology, 1275, 31-56, DOI: 10.1007/978-1-4939-2365-6.

Safeena, M.I.S., Dissanayake, Y., Zakeel, M.C.M., Warnakula, L., Cooray, R. and Dayarathna, D.A.R.K., 2021. An improved method for efficient recovery of high quality DNA from date palm (Phoenix dactylifera L; Arecaceae). MethodsX, 8, DOI: 10.1016/j.mex.2021.101384.

Cai, H., Gu, X., Scanlan, M.S., Ramatlapeng, D.H. and Lively, C.R., 2012. Real-time PCR assays for detection and quantitation of porcine and bovine DNA in gelatin mixtures and gelatin capsules. Journal of Food Composition and Analysis, 25(1), 83-87, DOI: 10.1016/j. jfca.2011.06.008.

Estalilla, O.C., Medeiros, L.J., Manning, J.T. and Luthra, R., 2000. 5’ → 3’ Exonuclease-based real-time PCR assays for detecting the t(14;18)(q32;21): A survey of 162 malignant lymphomas and reactive specimens. Modern Pathology, 13(6), 661-666, DOI: 10.1038/mod pathol.3880116.

WHO, 2016. Establishment of PCR Laboratory in Developing Countries. 2nd ed. New Delhi: World Health Organization.

Negură, L. and Negură, A., 2012. Limits and pitfalls of Sybr green detection in quantitative PCR. Secţiunea Genetică şi Biologie Moleculară, 13, 13-18.

Yang, X.D., Tan, H.W. and Zhu, W.M., 2016. SpinachDB: A well-characterized genomic database for gene family classification and SNP information of spinach. PLoS ONE, 11(5), DOI: 10.1371/journal.pone.0152706.

Rahayu, W.P., Dianti, A.R.W., Nurjanah, S., Pusparini, N. and Adhi, W., 2020. Detection of DNA pork in processed meat products with real-time polymerase chain reaction. Food Research, 4(5), 1719-1725, DOI: 10.26656/FR.2017.4(5).165.

Dooley, J.J., Paine, K.E., Garrett, S.D. and Brown, H.M., 2004. Detection of meat species using TaqMan real-time PCR assays. Meat Science, 68(3), 431-438, DOI: 10.1016/j.meat sci.2004.04.010.

Hellemans, J. and Vandesompele, J., 2011. qPCR data analysis: unlocking the secret to successful results. In: S. Kennedy and N. Oswald, eds. PCR Troubleshooting and Optimization: The Essential Guide. Norfolk: Caister Academic Press, pp. 139-150.