Assessment of Phytotoxins Using Different Technologies

Main Article Content

Mohammad Mehdizadeh*
Waseem Mushtaq
Shahida Anusha Siddiqui
Duraid Kamal Abass Al-Taey
Koko Tampubolon

Abstract

Nowadays, phytotoxins as natural compounds extracted from different plants are widely used as growth regulators or growth inhibitors for other plants or microorganisms. Furthermore, phytotoxin study may lead to the synthesis of new products with various biological activities. Therefore, the detection and identification of these compounds is very important in the study of their effects on living organisms and the environment. Different methods have been used for the identification and characterization of phytotoxins. This study is devoted to reviewing various methods for the extraction, purification, detection, and identification of phytotoxins from different plant species. The most common methods for detecting plant toxins include a variety of bioassays (plant, cell, and enzyme assay) and the application of a wide range of chemical and analytical methods (especially chromatographic techniques). Both types of methods will be discussed in more details. Moreover, applications of these methods in the study of phytotoxin interaction from recent studies are exemplified to aid understanding f these interactions. It can be concluded that bioassay and analytical methods are the two fundamental techniques for phytotoxin analysis. In addition, new advanced techniques that can enable better understanding of phytotoxins and their functions and which are based on biochemistry, robotics, biosensors, nanotechnology, and enzyme-based methods will be developed in the near future.


Keywords: bioassay; biopesticide; chromatography; detection; identification; phytotoxin


*Corresponding author: Tel.: (+98)9183442931, Fax: (+98)8432201357


                                             E-mail: mehdizade.mohammad@gmail.com

Downloads

Download data is not yet available.

Article Details

Section
Review Ariticle

References

[1] Hoerger, C.C., Schenzel, J., Strobel, B.W. and Bucheli, T.D., 2009. Analysis of selected phytotoxins and mycotoxins in environmental samples. Analytical and Bioanalytical Chemistry, 395, 1261-1289.
[2] Seufert, V., Ramankutty, N. and Foley, J.A., 2012. Comparing the yields of organic and conventional agriculture. Nature, 4, 229-234.
[3] Jabran, K., Mahajan, G., Sardana, V. and Chauhan, B.S., 2015. Allelopathy for weed control in agricultural systems. Crop Protection, 72, 57-65.
[4] Pino-Otín, M.R., Val, J., Ballestero, D., Navarro, E., Sánchez, E., González-Coloma, A. and Mainar, A.M., 2019. Ecotoxicity of a new biopesticide produced by Lavandula luisieri on non-target soil organisms from different trophic levels. Science of the Total Environment, 671, 83-93.
[5] Vetter, J., 2000. Plant cyanogenic glycosides. Toxicon, 38(1), 11-36.
[6] Puig, C.G., Gonçalves, R.F., Valentão, P., Andrade, P.B., Reigosa, M.J. and Pedrol, N., 2018. The consistency between phytotoxic effects and the dynamics of allelochemicals release from Eucalyptus globulus leaves used as bioherbicide green manure. Journal of Chemical Ecology, 44, 658-670.
[7] Pardo-Muras, M., Puig, C.G., López-Nogueira, A., Cavaleiro, C. and Pedrol, N., 2018. On the bioherbicide potential of Ulex europaeus and Cytisus scoparius: Profiles of volatile organic compounds and their phytotoxic effects. PLoS ONE, 13(10), e0205997, https://doi.org/10.1371/journal.pone.0205997.
[8] Masi, M., Freda, F., Sangermano, F., Calabrò, V., Cimmino, A., Cristofaro, M., Meyer, S. and Evidente, A., 2019. Radicinin, a fungal phytotoxin as a target-specific bioherbicide for invasive Buffelgrass (Cenchrus ciliaris) control. Molecules, 24(6), 1086, https://doi.org/10.3390/molecules24061086.
[9] AbuDalo, M.A., Al-Mheidat, I.R., Al-Shurafat, A.W., Grinham, C. and Oyanedel-Craver, V., 2019. Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity. Peer Journal Life & Environment, 7, e6413, https://doi.org/10.7717/peerj.6413.
[10] Ayaz, M., Ullah, F., Sadiq, A., Ullah, F., Ovais, M., Ahmed, J. and Devkota, H.P., 2019. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chemico-Biological Interactions, 308, 294-303.
[11] Pepa, T.D., Elshafie, H.S., Capasso, R., Feo, V.D., Camele, I., Nazzaro, F., Scognamiglio, M.R. and Caputo, L., 2019. Antimicrobial and phytotoxic activity of Origanum heracleoticum and O. majorana essential oils growing in Cilento (Southern Italy). Molecules, 24(14), 2576, https://doi.org/10.3390/molecules24142576.
[12] Lin, B.B., Liu, X., Wu, S.Q., Zheng, H.X., Huo, K.K., Qi, S.S. and Chen, C., 2019. Phytochemicals content, antioxidant and antibacterial activities of Sophora viciifolia. Chemistry and Biodiversity, 16(7), https://doi.org/10.1002/cbdv.201900080.
[13] Oleszek, M., Kowalska, I. and Oleszek, W., 2019. Phytochemicals in bioenergy crops. Phytochemistry Reviews, 18, 893-927.
[14] Kohler, M., Schwambach, J. and Soares, G.L.G., 2018. Seed size correlation with phytotoxic effects of Baccharis psiadioides essential oil during seeds germination. Allelopathy Journal, 44(1), 107-118.
[15] Vieira, L.R., da Silva, E.R., Gonçalves Soares, G.L., Fior, C.S., Ethur, E.M., Hoehne, L. and de Freitas, E.M., 2018. Phytotoxic effects of Morus nigra aqueous extract on germination and seedling growth of Lactuca sativa. Rodriguésia, 69(4), 2153-2161.
[16] Okada, S., Iwasaki, A., Kataoka, I., Suenaga, K. and Kato-Noguchi, H., 2019. Phytotoxic activity of kiwifruit leaves and isolation of a phytotoxic substance. Scientia Horticulturae. 250, 243-248.
[17] Zhang, B., Weston, P.A., Gu, L., Zhang, B., Li, M., Wang, F., Tu, W., Wang, J., Weston, L.A. and Zhang, Z., 2019. Identification of phytotoxic metabolites released from Rehmannia glutinosa suggest their importance in the formation of its replant problem. Plant and Soil, https://doi.org/10.1007/s11104-019-04136-4.
[18] Arroyo, A.I., Pueyo, Y., Pellissier, F., Ramos, J., Espinosa-Ruiz, A., Millery, A. and Alados, C.L., 2018. Phytotoxic effects of volatile and water soluble chemicals of Artemisia herba-alba. Journal of Arid Environments, 151, 1-8, https://doi.org/10.1016/j.jaridenv.2017.11.010.
[19] Locatelli, M., Macchione, N., Ferrante, C., Chiavaroli, A., Recinella, L., Carradori, S., Zengin, G., Cesa, S., Leporini, L., Leone, S., Brunetti, L., Menghini, L. and Orlando, G., 2018. Graminex pollen: Phenolic pattern, colorimetric analysis and protective effects in immortalized prostate cells (PC3) and rat prostate challenged with LPS. Molecules, 23(5), 1145, https://doi.org/10.3390/molecules23051145.
[20] Rakotomalala, G., Agard, C., Tonnerre, P., Tesse, A., Derbré, S., Michalet, S., Hamzaoui, J., Rio, M., Cario-Toumaniantz, C., Richomme, P., Charreau, B., Loirand, G. and Pacaud, P., 2013. Extract from Mimosa pigra attenuates chronic experimental pulmonary hypertension. Journal of Ethnopharmacology, 148(1), 106-116.
[21] Favaretto, A., Cantrell, C.L., Fronczek, F.R., Duke, S.O., Wedge, D.E., Ali, A. and Scheffer-Basso, S.M., 2019. New phytotoxic Cassane-like diterpenoids from Eragrostis plana. Journal of Agricultural and Food Chemistry, 67(7), 1973-1981.
[22] Suwitchayanon, P., Ohno, O., Suenaga, K. and Kato-Noguchi, H., 2019. Phytotoxic property of Piper retrofractum fruit extracts and compounds against the germination and seedling growth of weeds. Acta Physiologiae Plantarum, 41, 33, https://doi.org/10.1007/s11738-019-2824-y.
[23] Thakur, A., Sharma, V. and Thakur, A., 2018. Phytotoxins - A mini review. Journal of Pharmacognosy and Phytochemistry, 7(6), 2705-2708.
[24] Sołtys-Kalina, D., Murawska, Z., Strzelczyk-Żyta, D., Wasilewicz-Flis, I. and Marczewski, W., 2019. Phytotoxic potential of cultivated and wild potato species (Solanum sp.): role of glycoalkaloids, phenolics and flavonoids in phytotoxicity against mustard (Sinapis alba L.). Acta Physiologiae Plantarum, 41, 55, https://doi.org/10.1007/s11738-019-2848-3.
[25] Duke, S.O. and Dayan, F.E., 2006. Modes of action of phytotoxins from plants. In: M. Reigosa, N. Pedrol and L. González, eds. Allelopathy. Dordrecht: Springer.
[26] Wittstock, U. and Gershenzon, J., 2002. Constitutive plant toxins and their role in defense against herbivores and pathogens. Current Opinion in Plant Biology, 5(4), 300-307.
[27] Shibamoto, T. and Bjeldanes, L.F., 2009. Introduction to Food Toxicology. Cambridge: Academic Press.
[28] Yonekura-Sakakibara, K. and Saito, K., 2009. Functional genomics for plant natural product biosynthesis. Natural Product Reports, 26, 1466-1487.
[29] Mehmood, A., Naeem, M., Khalid, F., Saeed, Y., Abbas, T., Jabran, K., Sarwar, M.A., Tanveer, A. and Javaid, M.M., 2018. Identification of phytotoxins in different plant parts of Brassica napus and their influence on mung bean. Environmental Science and Pollution Research, 25, 18071-18080.
[30] Günthardt, B.F., Hollender, J., Hungerbühler, K., Scheringer, M. and Bucheli, T.D., 2018. Comprehensive toxic plants-phytotoxins database and its application in assessing aquatic micropollution potential. Journal of Agricultural and Food Chemistry, 66, 7577-7588.
[31] Rios, M.Y., Córdova-Albores, L.C., Ramírez-Cisneros, M.A., King-Díaz, B., Lotina-Hennsen, B., Rivera, I.L. and Miranda-Sánchez, D., 2018. Phytotoxic potential of Zanthoxylum affine and its major compound Linarin as a possible natural herbicide. ACS Omega, 3(11), 14779-14787.
[32] Torrents, R., Domange, B., Schmitt, C., Boulamery, A., Haro, L.D. and Simon, N., 2017. Suicide attempt by ingestion of rotenone-containing plant extracts in French polynesia: a Case Report. Wilderness and Environmental Medicine, 28, 278-279.
[33] Rasmussen, L.H., Hansen, H.C.B. and Lauren, D., 2005. Sorption, degradation and mobility of ptaquiloside, a carcinogenic bracken (Pteridium sp.) constituent, in the soil environment. Chemosphere, 58(6), 823-835.
[34] Hoerger, C.C., Wettstein, F.E., Bachmann, H.J., Hungerbuehler, K. and Bucheli, T.D., 2011. Occurrence and mass balance of isoflavones on an experimental grassland field. Environmental Science and Technology, 45(16), 6752-6760.
[35] Jensen, P.H., Strobel, B.W., Hansen, H.C.B. and Jacobsen, O.S., 2009. Fate of toxic potato glycoalkaloids in a potato field. Journal of Agricultural and Food Chemistry, 57(29), 2862-2867.
[36] Chemat, F., Vian, M.A. and Cravotto, G., 2012. Green extraction of natural products: concept and principles. International Journal of Molecular Sciences, 13(7), 8615-8627.
[37] Stavropoulou, M.I., Angelis, A., Aligiannis, N., Kalpoutzakis, E., Mitakou, S., Duke, S.O. and Fokialakis, N., 2017. Phytotoxic triterpene saponins from Bellis longifolia, an endemic plant of Crete. Phytochemistry, 144, 71-77.
[38] Bubalo, M.C., Vidović, S., Redovniković, I.R. and Jokić, S., 2018. New perspective in extraction of plant biologically active compounds by green solvents. Food and Bioproducts Processing, 109, 52-73.
[39] Wu, X., Yu, X. and Jing, H., 2011. Optimization of phenolic antioxidant extraction from Wuweizi (Schisandra chinensis) pulp using random-centroid optimization methodology. International Journal of Molecular Sciences, 12(9), 6255-6266.
[40] Yu, J.Q. and Matsui, Y., 1993. Extraction and identification of phytotoxic substances accumulated in nutrient solution for the hydroponic culture of tomato. Soil Science and Plant Nutrition, 39(4), 691-700.
[41] Lim, C.J., Basria, M., Ee, G.C.L. and Omar, D., 2017. Phytoinhibitory activities and extraction optimization of potent invasive plants as eco-friendly weed suppressant against Echinochloa colona (L.) Link. Industrial Crops and Products, 100, 19-34.
[42] Grisi, P.U., Forim, M.R., Costa, E.S., Anese, S., Franco, M.F., Eberlin, M.N. and Gualtieri, S.C.G., 2015. Phytotoxicity and identification of secondary metabolites of Sapindus saponaria L. leaf extract. Journal of Plant Growth Regulation, 34, 339-349.
[43] Martinez, A.F.C., Mello, F.M.P., Zucchi, T.D., Melo, I.S. and Moraes, L.A.B., 2020. Tandem mass spectrometry methods to accelerate the identification of phytotoxic metabolites produced by Streptomyces sp. 39 PL. Natural Product Research, 34(2), 210-216.
[44] Qasim, M., Fujii, Y., Ahmed, M.Z., Aziz, I., Watanabe, K.N. and Khan, M.A., 2019. Phytotoxic analysis of coastal medicinal plants and quantification of phenolic compounds using HPLC. Plant Biosystems, 153(6), 767-774.
[45] Puig, C.G., Reigosa, M.J., Valentão, P., Andrade, P.B. and Pedrol, N., 2018. Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. PLoS ONE, 13(2), e0192872, https://doi.org/10.1371/journal.pone.0192872.
[46] Mizushina, Y., Kamisuki, S., Kasai, N., Shimazaki, N., Takemura, M., Asahara, H., Linn, S., Yoshida, S., Matsukage, A., Koiwai, O., Sugawara, F., Yoshida, H. and Sakaguchi, K., 2002. A plant phytotoxin, solanapyrone A, is an inhibitor of DNA polymerase β and λ. Journal of Biological Chemistry, 277(1), 630-638.
[47] Sérandour, A.L., Ledreux, A., Morin, B., Derick, S., Augier, E., Lanceleur, R., Hamlaoui, S., Moukha, S., Furger, C., Biré, R., Krys, S., Fessard, V., Troussellier, M. and Bernard, C., 2012. Collaborative study for the detection of toxic compounds in shellfish extracts using cell-based assays. Part I: screening strategy and pre-validation study with lipophilic marine toxins. Analytical and Bioanalytical Chemistry, 403, 1983-1993.
[48] Queiroz, S.C., Cantrell, C.L., Duke, S.O., Wedge, D.E., Nandula, V.K., Moraes, R.M. and Cerdeira, A.L., 2012. Bioassay-directed isolation and identification of phytotoxic and fungitoxic acetylenes from Conyza canadensis. Journal of Agricultural and Food Chemistry, 60(23), 5893-5898.
[49] Vilariño, N., Louzao, M.C., Vieytes, M.R. and Botana, L.M., 2010. Biological methods for marine toxin detection. Analytical and Bioanalytical Chemistry, 397, 1673-1681.
[50] Scognamiglio, M., Graziani, V., Tsafantakis, N., Esposito, A., Fiorentino, A. and D'Abrosca, B., 2019. NMR-based metabolomics and bioassays to study phytotoxic extracts and putative phytotoxins from Mediterranean plant species. Phytochemical Analysis, 30(5), 512-523.
[51] Pennacchio, M., Jefferson, L.V. and Havens, K., 2005. Arabidopsis thaliana: a new test species for phytotoxic bioassays. Journal of Chemical Ecology, 31, 1877-1885.
[52] Suzuki, M., Chozin, M.A., Iwasaki, A., Suenaga, K. and Kato-Noguchi, H. 2019. Phytotoxic activity of Chinese violet (Asystasia gangetica (L.) T. Anderson) and two phytotoxic substances. Weed Biology and Management. 19(1), 3-8.
[53] Fujii, Y., Shibuya, T., Nakatani, K., Itani, T., Hiradate, S. and Parvez, M.M., 2004. Assessment method for allelopathic effect from leaf litter leachates. Weed Biology and Management, 4(1), 19-23.
[54] Itani, T., Nakahata, Y. and Kato, N.H., 2013. Allelopathic activity of some herb plant species. International Journal of Agriculture and Biology, 15(6), 1359-1362.
[55] Hernández-Oro, M., Hernández, P.R. and Guillén, S.D., 2015. New micro bioassay sandwich to detection allelopathic activity from Ipomoea batatas (L.) Lam. Journal of Food Agriculture and Environment, 13(3&4), 45-48.
[56] Tefera, T., 2002. Allelopathic effects of Parthenium hysterophorus extracts on seed germination and seedling growth of Eragrostis tef. Journal of Agronomy and Crop Science, 188(5), 306-310.
[57] Anese, S., Grisi, P.U., Jatoba, L.J., Pereira, V.C. and Gualtieri, S.C.J., 2015. Phytotoxic activity of different plant parts of Drimys brasiliensis Miers on germination and seedling development. Bioscience Journal, 31(3), 923-933.
[58] Macias, F.A., Oliveros-Bastidas, A., David Marin, D., Carrera, C., Chinchilla, N. and Molinillo, J.M.G., 2008. Plant biocommunicators: their phytotoxicity, degradation studies and potential use as herbicide models. Phytochemistry Reviews, 7, 179-194.
[59] Masi, M., Freda, F., Clement, S., Cimmino, A., Cristofaro, M., Meyer, S. and Evidente, A., 2019. Phytotoxic activity and structure–activity relationships of radicinin derivatives against the invasive weed Buffelgrass (Cenchrus ciliaris). Molecules, 24(15), 2793, http://doi.org/10.3390/molecules24152793.
[60] Meepagala, K.M., Clausen, B.M., Johnson, R.D., Wedge, D.E. and Duke, S.O., 2019. A phytotoxic and antifungal metabolite (Pyrichalasin H) from a fungus infecting Brachiaria eruciformis (signal grass). Journal of Agricultural Chemistry and Environment, 8(3), 115-128.
[61] Labruzzo, A., Cantrell, C.L., Carrubba, A., Ali, A., Wedge, D.E. and Duke, S.O., 2018. Phytotoxic lignans from Artemisia arborescens. Natural Product Communications, 13(3), 237-240.
[62] Islam, M.S., Iwasaki, A., Suenaga, K. and Kato-Noguchi, H. 2018. Evaluation of phytotoxic potential and identification of phytotoxic compounds in Rumex maritimus. Plant Biosystems, 152(4), 804-809.
[63] Chen, J., Zheng, G., Zhang, Y., Aisa, H.A. and Hao, X.J., 2017. Phytotoxic terpenoids from Ligularia cymbulifera roots. Frontiers in Plant Science, 7, 2033, https://doi.org/10.3389/ fpls.2016.02033.
[64] Boonmee, S., Iwasaki, A., Suenaga, K. and Kato-Noguchi, H. 2018. Evaluation of phytotoxic activity of leaf and stem extracts and identification of a phytotoxic substance from Caesalpinia mimosoides Lamk. Theoretical and Experimental Plant Physiology, 30, 129-139.
[65] Gligor, O., Mocan, A., Moldovan, C., Locatelli, M., Crișan, G. and Ferreira, I.C.F.R., 2019. Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends in Food Science & Technology, 88, 302-315.
[66] Zengin, G., Locatelli, M., Stefanucci, A., Macedonio, G., Novellino, E., Mirzaie, S., Dvorácskó, S., Carradori, S., Brunetti, L., Orlando, G., Menghini, L., Ferrante, C., Recinella, L., Chiavaroli, A., Leporini, L. and Mollica, A., 2017. Chemical characterization, antioxidant properties, anti-inflammatory activity, and enzyme inhibition of Ipomoea batatas L. leaf extracts. International Journal of Food Properties, 20(2), 1907-1919.
[67] Gutiérrez-Martínez, P.B., Torres-Morán, M.I., Romero-Puertas, M.C., Casas-Solís, J., Zarazúa-Villaseñor, P., Sandoval-Pinto, E. and Ramírez-Hernández, B.C., 2020. Assessment of antioxidant enzymes in leaves and roots of Phaseolus vulgaris plants under cadmium stress. Biotecnia, 22(2), https://doi.org/10.18633/biotecnia.v22i2.1252.
[68] Ruan, X. and Peters, N.K., 1991. Rapid and sensitive assay for the phytotoxin rhizobitoxine. Applied and Environmental Microbiology, 57(7), 2097-2100.
[69] Galun, E. and Breiman, A., 1992. Quantitative assays of phytotoxins using plant protoplasts and isolated cells. In: H.F. Linskens and J.F. Jackson, eds. Plant Toxin Analysis. Modern Methods of Plant Analysis. Vol 13. Berlin: Springer.
[70] Rossini, G.P., 2005. Functional assays in marine biotoxin detection. Toxicology, 207(3), 451-462.
[71] Diuzheva, A., Locatelli, M., Tartaglia, A., Goga, M., Ferrone, V., Carlucci, G. and Andruch, V., 2020. Application of liquid-phase microextraction to the analysis of plant and herbal samples. Phytochemical Analysis, 31(6), 687-699.
[72] Abad-García, B., Berrueta, L.A., Garmón-Lobato, S., Gallo, B. and Vicente, F., 2009. A general analytical strategy for the characterization of phenolic compounds in fruit juices by high-performance liquid chromatography with diode array detection coupled to electrospray ionization and triple quadrupole mass spectrometry. Journal of Chromatography A, 1216(28), 5398-5415.
[73] Meepagala, K.M., Bracken, A.K., Fronczek, F.R., Johnson, R.D., Wedge, D.E and Duke, S.O., 2021. Furanocoumarin with phytotoxic activity from the leaves of Amyris elemifera (Rutaceae). ACS Omega, 6(1), 401-407.
[74] Matuszewski, B.K., Constanzer, M.L. and Chavez-Eng, C., 2003. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC MS/MS. Analytical Chemistry, 75(13), 3019-3030.
[75] Coskun, O., 2016. Separation techniques: Chromatography. Northern Clinics of Istanbul, 3(2), 156-160.
[76] Tome, T., Žigart, N., Časar, Z. and Obreza, A., 2019. Development and optimization of liquid chromatography analytical methods by using AQbD principles: Overview and recent advances. Organic Process Research & Development, 23 (9), 1784-1802.
[77] Kuppusamy, P., Kim, D., Park, H.S., Jung, J.S. and Choi, K.C., 2020. Quantitative determination of phenolic acids and flavonoids in fresh whole crop rice, silage, and hay at different harvest periods. Applied Science, 10(22), 7981, http://doi.org/10.3390/app 10227981.
[78] Mizzi, L., Chatzitzika, C., Gatt, R. and Valdramidis, V., 2020. HPLC analysis of phenolic compounds and flavonoids with overlapping peaks. Food Technology and Biotechnology, 58(1), 12-19.
[79] Hapsari, B.W., Manikharda and Setyaningsih, W., 2021. Methodologies in the analysis of phenolic compounds in Roselle (Hibiscus sabdariffa L.): Composition, biological activity, and beneficial effects on human health. Horticulturae, 7(2), 35, https://doi.org/10.3390/ horticulturae7020035.
[80] Chuah, T.S., Norhafizah, Z. and Ismail, S., 2014. Phytotoxic effects of the extracts and compounds isolated from Napiergrass (Pennisetum purpureum) on Chinese Sprangletop (Leptochloa chinensis) germination and seedling growth in aerobic rice systems. Weed Science, 62(3), 457-467.
[81] Shanmugapackiam, S., Parthasarathy, S. and Raguchander, T., 2017. Detection of phytotoxin produced from leaf, neck and finger blast disease causing Magnaporthe grisea through GC-MS analysis. International Journal of Biochemistry Research & Review, 19(3), 1-10, https://doi.org/10.9734/IJBCRR/2017/33353.
[82] Chughtai, K. and Heeren, R.M., 2010. Mass spectrometric imaging for biomedical tissue analysis. Chemical Reviews, 110(5), 3237-3277.
[83] Kivilompolo, M. and Hyötyläinen, T., 2007. Comprehensive two-dimensional liquid chromatography in analysis of lamiaceae herbs: Characterization and quantification of antioxidant phenolic acids. Journal of Chromatography A, 1145(1-2), 155-164.
[84] Shimizu, T., Watanabe, M., Fernie, A.R. and Tohge, T., 2018. Targeted LC-MS analysis for plant secondary metabolites. Methods Molecular Biology, 1778, 171-181.
[85] Nam, K.H., Kim, D.Y., Kim, H.J., Pack, I.S., Kim, H.J., Chung, Y.S., Kim, S.Y. and Kim, C.G., 2019. Global metabolite profiling based on GC–MS and LC–MS/MS analyses in ABF3-overexpressing soybean with enhanced drought tolerance. Applied Biology Chemistry, 62, 15, https://doi.org/10.1186/s13765-019-0425-5.
[86] Zhou, J.L., Qi, L.W. and Li, P., 2009. Herbal medicine analysis by liquid chromatography/ time-of-flight mass spectrometry. Journal of Chromatography A, 1216(44), 7582-7594.
[87] Oh, M., Park, S., Kim, H., Choi, G.J. and Kim, S.H., 2021. Application of UPLC-QTOF-MS based untargeted metabolomics in identification of metabolites induced in pathogen-infected rice. Plants, 10(2), 213, https://doi.org/10.3390/plants10020213.
[88] Gardiner, J.B., Morra, M.J., Eberlein, C.V., Brown, P.D. and Borek, V., 1999. Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures. Journal of Agriculture Food Chemistry, 47(9), 3837-3842.
[89] Rawlinson, C., Kamphuis, L.G., Gummer, J.P.A., Singh, K.B. and Trengove, R.D., 2015. A rapid method for profiling of volatile and semi-volatile phytohormones using methyl chloroformate derivatisation and GC-MS. Metabolomics, 11, 1922-1933.
[90] Leitaoa, G.G., Leitao, S.G. and Vilegas, W., 2002. Quick preparative separation of natural Naphthopyranones with antioxidant activity by high-speed counter-current chromatography. Z Naturforsch Zeitschrift Journal of Bioscience, 57(11-12), 1051-1055.
[91] Chung, M. and Kim, K.J., 1994. Separation, identification of bioactive compounds from alfalfa plant. Analytical Science and Technology, 7(3), 403-411.
[92] Cao, Z., Khodakaramian, G., Arakawa, K. and Kinashi, H., 2012. Isolation of Borrelidin as a phytotoxic compound from a potato pathogenic Streptomyces strain. Bioscience, Biotechnology and Biochemistry, 76(2), 353-357.
[93] Das, K.R., Iwasaki, K., Suenaga, K. and Kato-Noguchi, H., 2020. Isolation and identification of two phytotoxic compounds from the medicinal plant Cassia alata L. Weed Biology and Management, 20(1), 3-11.
[94] Ligor, M. and Buszewski, B., 2007. Thin layer chromatographic techniques (TLC, OP TLC) for determination of biological activated compounds from herb extracts.
Journal of Liquid Chromatography & Related Technologies, 30(17), 2617-2628.
[95] Tolstikov, V.V. and Fiehn, O., 2002. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Analytical Biochemistry, 301(2), 298-307.
[96] Lunn, J.E., Feil, R., Hendriks, J.H., Gibon, Y., Morcuende, R., Osuna, D., Scheible, W.R., Carillo, P. and Hajirezaei, M.R., 2006. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochemistry Journal, 397(1), 139-148.
[97] Chiwocha, S.D., Abrams, S.R., Ambrose, S.J., Cutler, A.J., Loewen, M., Ross, A.R. and Kermode, A.R., 2003. A method for profiling classes of plant hormones and their metabolites using liquid chromatography–electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant Journal, 35(3), 405-417.
[98] Sato, S., Soga, T., Nishioka, T. and Tomita, M., 2004. Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant Journal, 40(1), 151-163.
[99] Zhao, J., Hu, C., Zeng, J., Chang, Y., Li, L., Zhao, C., Lu, X. and Xu, G., 2014. Study of polar metabolites in tobacco from different geographical origins by using capillary electrophoresis–mass spectrometry. Metabolomics, 10, 805-815.
[100] Zhou, X., Zheng, C., Sun, J. and You, T., 2006. Analysis of nephroloxic and carcinogenic aristolochic acids in Aristolochia plants by capillary electrophoresis with electrochemical detection at a carbon fiber microdisk electrode. Journal of Chromatography A, 1109(2), 152-159.
[101] Ong, E.S. and Woo, S.O., 2001. Determination of aristolochic acids in medicinal plants (Chinese) prepared medicine using capillary zone electrophoresis. Electrophoresis, 22(11), 2236-2241.
[102] Jung, W.S., Lee, J., Kim, M.I., Ma, J., Nagamatsu, T., Goo, E., Kim, H., Hwang, I., Han, J. and Rhee, S., 2011. Structural and functional analysis of phytotoxin toxoflavin-degrading enzyme. PLoS ONE, 6(7), e22443, https://doi.org/10.1371/journal.pone.0022443.
[103] Ragupathi, G., Prabhasankar, P., Sekharan, P.C., Annapoorani, K.S. and Damodaran, C., 1992. Enzyme-linked immunosorbent assay for the phytotoxin cleistanthin A. Journal of Immunoassay, 13(3), 321-338.