A Brief Overview of Telomeres and Telomerase in Aging and Cancer

Main Article Content

Husaina Banu Lateef
Pavane Mitta Suresh
Priyadharshini B
Surajit Pathak
Antara Banerjee*

Abstract

Telomere is guanine-rich DNA sequence with a protein complex known as shelterin present at the chromosomal ends to protect it from destruction and is known to play a key role in aging. Telomerase is a telomeric DNA elongating enzyme, which comprises the central key components for telomeric DNA synthesis. The main objective of this review was to explore the structure and function of telomere and telomerase, and their intervention in aging, stem cells, and cancer cells. The induction of various telomeropathies and age-related diseases by Telomerase RNA component (TERC) impairment is well explained. Telomeropathies refer to bone marrow failures such as dyskeratosis congenita, aplastic anemia, etc. Telomere and telomerase have become the targets for age-related therapies, stem cell therapies, and cancer therapies. This article throws light on the telomerase-related therapies with natural compounds in regenerative medicine and cancer treatment. Telomerase inhibitors like nucleoside ligands and G4 ligands are explained in the context of anti-cancer drugs. The association of TERT promoter mutations with cancer is discussed. We conclude that understanding telomerase mechanisms in stem cells and cancer cells paves a way to translate stem cells, cancer cells, and age-related research into effective therapies. The dynamic features of telomerase and telomeres make their structural and biochemical studies difficult. Hence, further meticulous studies can be done on single-molecule approaches to facilitate feasible and effective studies of telomerase and telomere component functioning.


Keywords: telomere; telomerase; telomerase reverse transcriptase; stem cells; cancer; aging; telomeric DNA; cancer stem cells


*Corresponding author: Tel.: (+91) 9566072596


                                            E-mail: [email protected]

Article Details

Section
Review Ariticle

References

Armstrong, C.A. and Tomita, K., 2017. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells. Open Biology, 7(3), DOI: 10.1098/rsob.160338.

Roake, C. and Artandi, S., 2020. Regulation of human telomerase in homeostasis and disease. Nature Reviews Molecular Cell Biology, 21(7), 384-397.

Herbert, B.S., 2011. The impact of telomeres and telomerase in cellular biology and medicine: it's not the end of the story. Journal of Cellular and Molecular Medicine, 15(1), DOI: 10.1111/j.1582-4934.2010.01233.x.

Deka, D., Scarpa, M., Das, A., Pathak, S. and Banerjee, A., 2021. Current understanding of epigenetics driven therapeutic strategies in colorectal cancer management. Endocrine, Metabolic and Immune Disorders - Drug Targets, 21(10), 1882-1894.

Schmutz, I. and de Lange, T., 2016. Shelterin. Current Biology, 26(10), R397-R399.

Ly, H., Xu, L., Rivera, M., Parslow, T. and Blackburn, E., 2003. A role for a novel ‘trans-pseudoknot’ RNA–RNA interaction in the functional dimerization of human telomerase. Genes and Development, 17(9), 1078-1083.

Wang, Q., Liu, J., Chen, Z., Zheng, K., Chen, C., Hao, Y. and Tan, Z., 2011. G-quadruplex formation at the 3' end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase. Nucleic Acids Research, 39(14), 6229-6237.

Zinder, J.C., Olinares, P.D.B., Svetlov, V., Bush, M.W., Nudler, E., Chait, B.T., Walz, T. and de Lange, T., 2022. Shelterin is a dimeric complex with extensive structural heterogeneity. Proceedings of the National Academy of Sciences, 119(31), DOI: 10.1073/pnas.2201662119.

Diotti, R. and Loayza, D., 2011. Shelterin complex and associated factors at human telomeres. Nucleus, 2(2), 119-135.

Bosco, N. and de Lange, T., 2012. A TRF1-controlled common fragile site containing interstitial telomeric sequences. Chromosoma, 121(5), 465-474.

He, H., Multani, A., Cosme-Blanco, W., Tahara, H., Ma, J., Pathak, S., Deng, Y. and Chang, S., 2006. POT1b protects telomeres from end-to-end chromosomal fusions and aberrant homologous recombination. The EMBO Journal, 25(21), 5180-5190.

Aramburu, T., Plucinsky, S. and Skordalakes, E., 2020. POT1-TPP1 telomere length regulation and disease. Computational and Structural Biotechnology Journal, 18, 1939-1946.

Takai, K.K., Kibe, T., Donigian, J.R., Frescas, D. and de Lange, T., 2017. Telomere protection by TPP1/POT1 requires tethering to TIN2. Molecular Cell, 44(4), 647-659.

Lu, W., Zhang, Y., Liu, D., Songyang, Z. and Wan, M., 2013. Telomeres—structure, function, and regulation. Experimental Cell Research, 319(2), 133-141.

Artandi, S.E., 2002. Complex roles for telomeres and telomerase in breast carcinogenesis. Breast Cancer Research, 5(1), 37-41.

Okamoto, K. and Seimiya, H., 2019. Revisiting telomere shortening in cancer. Cells, 8(2), DOI: 10.3390/cells8020107.

Casagrande, S. and Hau, M., 2019. Telomere attrition: metabolic regulation and signalling function? Biology Letters, 15(3), DOI: 10.1098/rsbl.2018.0885.

Wright, W. and Shay, J., 2002. Historical claims and current interpretations of replicative aging. Nature Biotechnology, 20(7), 682-688.

Podlevsky, J. and Chen, J., 2012. It all comes together at the ends: Telomerase structure, function, and biogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 730(1-2), 3-11.

Niaz, A., Truong, J., Manoleras, A., Fox, L., Blombery, P., Vasireddy, R., Pickett, H., Curtin, J., Barbaro, P., Rodgers, J., Roy, J., Riley, L., Holien, J., Cohen, S. and Bryan, T., 2022. Functional interaction between compound heterozygous TERT mutations causes severe telomere biology disorder. Blood Advances, 6(12), 3779-3791.

Jeong, Y., Her, J., Oh, S. and Chung, I., 2016. Hsp90-binding immunophilin FKBP52 modulates telomerase activity by promoting the cytoplasmic retrotransport of hTERT. Biochemical Journal, 473(20), 3517-3532.

Badrzadeh, F., Akbarzadeh, A., Zarghami, N., Yamchi, M., Zeighamian, V., Tabatabae, F., Taheri, M. and Kafil, H., 2014. Comparison between effects of free curcumin and curcumin loaded NIPAAm-MAA nanoparticles on telomerase and pinX1 gene expression in lung cancer cells. Asian Pacific Journal of Cancer Prevention,15(20), 8931-8936.

Abliz, G., Mijit, F., Hua, L., Abdixkur, G., Ablimit, T., Amat, N. and Upur, H., 2015. Anti-carcinogenic effects of the phenolic-rich extract from abnormal Savda Munziq in association with its cytotoxicity, apoptosis-inducing properties and telomerase activity in human cervical cancer cells (SiHa). BMC Complementary and Alternative Medicine, 15(23).

Kim, N., Piatyszek, M., Prowse, K., Harley, C., West, M., Ho, P., Coviello, G., Wright, W., Weinrich, S. and Shay, J., 1994. Specific association of human telomerase activity with immortal cells and cancer. Science, 266(5193), 2011-2015.

Kordowitzki, P., López de Silanes, I., Guío-Carrión, A. and Blasco, M., 2020. Dynamics of telomeric repeat-containing RNA expression in early embryonic cleavage stages with regards to maternal age. Aging, 12(16), 15906-15917.

Garrick, D. and Goodhardt, M., 2021. Aging of haematopoietic stem cells: Causes, consequences and future perspectives. Hématologie, 27(5), 242-252.

Tomita, K., 2018. How long does telomerase extend telomeres? Regulation of telomerase release and telomere length homeostasis. Current Genetics, 64(6), 1177-1181.

Roake, C.M. and Artandi, S.E., 2020. Regulation of human telomerase in homeostasis and disease. Nature Reviews Molecular Cell Biology, 21(7), 384-397.

Frank, A.K., Tran, D.C., Qu, R.W., Stohr, B.A., Segal, D.J. and Xu, L., 2015. The shelterin TIN2 subunit mediates recruitment of telomerase to telomeres. PLOS Genetics, 11(7), DOI: 10.1371/journal.pgen.1005410.

Yang, W. and Lee, Y., 2015. A DNA-hairpin model for repeat-addition processivity in telomere synthesis. Nature Structural and Molecular Biology, 22(11), 844-847.

Lim, C. and Cech, T., 2021. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nature Reviews Molecular Cell Biology, 22(4), 283-298.

Latrick, C. and Cech, T., 2010. POT1–TPP1 enhances telomerase processivity by slowing primer dissociation and aiding translocation. The EMBO Journal, 29(5), 924-933.

Hiyama, E. and Hiyama, K., 2007. Telomere and telomerase in stem cells. British Journal of Cancer, 96(7), 1020-1024, DOI:10.1038/sj.bjc.6603671.

Li, F., Ge, Y., Liu, D. and Songyang, Z., 2019. The role of telomere-binding modulators in pluripotent stem cells. Protein and Cell, 11(1), 60-70.

Armanios, M., 2015. Extrahematopoietic manifestations of telomere syndromes. Blood, 126(23), DOI: 10.1182/blood.V126.23.SCI-51.SCI-51.

Ballew, B. and Savage, S., 2013. Updates on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Review of Hematology, 6(3), 327-337.

Townsley, D.M., Dumitriu, B. and Young, N.S., 2014. Bone marrow failure and the telomeropathies. Blood, 124(18), 2775-2783.

Barbaro, P. and Vedi, A., 2016. Survival after hematopoietic stem cell transplant in patients with dyskeratosis congenita: systematic review of the literature. Biology of Blood and Marrow Transplantation, 22(7), 1152-1158.

Jose, S.S., Tidu, F., Burilova, P., Kepak, T., Bendickova, K. and Fric, J., 2018. The telomerase complex directly controls hematopoietic stem cell differentiation and senescence in an induced pluripotent stem cell model of telomeropathy. Frontiers in Genetics, 9, DOI: 10.3389/fgene.2018.00345.

Savage, S.A. and Niewisch, M.R., 2009. Dyskeratosis congenita and related telomere biology disorders. In: M.P. Adam, D.B. Everman, G.M. Mirzaa, R.A. Pagon and S.E. Wallace, eds. GeneReviews®. Seattle: University of Washington.

Huang, Y., Liang, P., Liu, D., Huang, J. and Songyang, Z., 2014. Telomere regulation in pluripotent stem cells. Protein and Cell, 5(3), 194-202.

Zeng, S., Liu, L., Sun, Y., Xie, P., Hu, L., Yuan, D., Chen, D., Ouyang, Q., Lin, G. and Lu, G., 2014. Telomerase-mediated telomere elongation from human blastocysts to embryonic stem cells. Journal of Cell Science, 127(4), 752-762.

Wang, H., Zhang, K., Liu, Y., Fu, Y., Gao, S., Gong, P., Wang, H., Zhou, Z., Zeng, M., Wu, Z., Sun, Y., Chen, T., Li, S. and Liu, L., 2017. Telomere heterogeneity linked to metabolism and pluripotency state revealed by simultaneous analysis of telomere length and RNA-seq in the same human embryonic stem cell. BMC Biology, 15, DOI: 10.1186/s12915-017-0453-8.

Aguado, T., Gutiérrez, F., Aix, E., Schneider, R., Giovinazzo, G., Blasco, M. and Flores, I., 2016. Telomere length defines the cardiomyocyte differentiation potency of mouse induced pluripotent stem cells. Stem Cells, 35(2), 362-373.

Hokland, P., Woll, P., Hansen, M. and Bill, M., 2019. The concept of leukaemic stem cells in acute myeloid leukaemia 25 years on: hitting a moving target. British Journal of Haematology, 187(2), 144-156.

Pathak, S. and Banerjee, A., 2021. Emerging importance of microrna in early detection of colorectal cancer. Endocrine, Metabolic and Immune Disorders - Drug Targets, 21(1), 2-3.

Liu, K., Hodes, R. and Weng, N., 2001. Cutting edge: telomerase activation in human t lymphocytes does not require increase in telomerase reverse transcriptase (htert) protein but is associated with htert phosphorylation and nuclear translocation. The Journal of Immunology, 166(8), 4826-4830.

Huang, F.W., Bielski, C.M., Rinne, M.L., Hahn, W.C., Sellers, W.R., Stegmeier, F., Garraway, L.A. and Kryukov, G.V., 2015. TERT promoter mutations and monoallelic activation of TERT in cancer. Oncogenesis, 4(12), DOI: 10.1038/oncsis.2015.39.

Chiba, K., Johnson, J.Z., Vogan, J.M., Wagner, T., Boyle, J.M. and Hockemeyer, D., 2015. Cancer-associated TERT promoter mutations abrogate telomerase silencing. eLife, 4, DOI: 10.7554/eLife.07918.

Rahmanto, Y., Jung, J., Wu, R., Kobayashi, Y., Heaphy, C., Meeker, A., Wang, T. and Shih, I., 2016. Inactivating ARID1A tumor suppressor enhances tert transcription and maintains telomere length in cancer cells. Journal of Biological Chemistry, 291(18), 9690-9699.

Killela, P., Reitman, Z., Jiao, Y., Bettegowda, C., Agrawal, N., Diaz, L., Friedman, A., Friedman, H., Gallia, G., Giovanella, B., Grollman, A., He, T., He, Y., Hruban, R., Jallo, G., Mandahl, N., Meeker, A., Mertens, F., Netto, G., Rasheed, B., Riggins, G., Rosenquist, T., Schiffman, M., Shih, I., Theodorescu, D., Torbenson, M., Velculescu, V., Wang, T., Wentzensen, N., Wood, L., Zhang, M., McLendon, R., Bigner, D., Kinzler, K., Vogelstein, B., Papadopoulos, N. and Yan, H., 2013. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proceedings of the National Academy of Sciences, 110(15), 6021-6026.

Meeran, S.M., Patel, S.N. and Tollefsbol, T.O., 2010. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS ONE, 5(7), DOI: 10.1371/journal.pone.0011457.

Gomez, D.L.M., Armando, R.G., Cerrudo, C.S., Ghiringhelli, P.D. and Gomez, D.E., 2016. Telomerase as a cancer target. Development of new molecules. Current Topics in Medicinal Chemistry, 16(22), 2432-2440.

Bryan, C., Rice, C., Hoffman, H., Harkisheimer, M., Sweeney, M. and Skordalakes, E., 2015. Structural basis of telomerase inhibition by the highly specific bibr1532. Structure, 23(10), 1934-1942.

Wojdyla, L., Stone, A.L., Sethakorn, N., Uppada, S.B., Devito, J.T., Bissonnette, M. and Puri, N., 2014. T-oligo as an anticancer agent in colorectal cancer. Biochemical and Biophysical Research Communications, 446(2), 596-601, DOI: 10.1016/j.bbrc.2014.03.013.

Ruden, M. and Puri, N., 2013. Novel anticancer therapeutics targeting telomerase. Cancer Treatment Reviews, 39(5), 444-456.

Jafri, M.A., Ansari, S.A., Alqahtani, M.H. and Shay, J.W., 2016. Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Medicine, 8, DOI: 10.1186/s13073-016-0324-x.

Mender, I., Gryaznov, S., Dikmen, Z., Wright, W. and Shay, J., 2014. Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2′-deoxyguanosine. Cancer Discovery, 5(1), 82-95.

Sprouse, A.A., Steding, C.E. and Herbert, B.-S., 2011. Pharmaceutical regulation of telomerase and its clinical potential. Journal of Cellular and Molecular Medicine, 16(1), 1-7.

Reshma, B.S., Aavula, T., Narasimman, V., Ramachandran, S., Essa, M.M. and Qoronfleh, M.W., 2022. Antioxidant and antiaging properties of agar obtained from brown seaweed laminaria digitata (hudson) in d-galactose-induced swiss albino mice. Evidence- Based Complementary and Alternative Medicine, 24, DOI: 10.1155/2022/7736378.

Yu, Y., Zhou, L., Yang, Y. and Liu, Y., 2018. Cycloastragenol: An exciting novel candidate for age-associated diseases. Experimental and Therapeutic Medicine, 16(3), 2175-2182, DOI: 10.3892/etm.2018.6501.

Li, Y., Liu, L., Andrews, L.G. and Tollefsbol, T.O., 2009. Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms. International Journal of Cancer, 125(2), 286-296. DOI: 10.1002/ijc.24398.

Ouchi, H., Ishiguro, H., Ikeda, N., Hori, M., Kubota, Y. and Uemura, H., 2005. Genistein induces cell growth inhibition in prostate cancer through the suppression of telomerase activity. International Journal of Urology, 12(1), 73-80, DOI: 10.1111/j.1442-2042.2004.00973.x.

Dong, X.X., Hui, Z.J., Xiang, W.X., Rong, Z.F., Jian, S. and Zhu, C.J., 2007. Ginkgo biloba extract reduces endothelial progenitor-cell senescence through augmentation of telomerase activity. Journal of Cardiovascular Pharmacology, 49(2), 111-115, DOI: 10.1097/FJC.0b013e31802 ef519.

Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S. and Wright, W.E., 1998. Extension of life-span by introduction of telomerase into normal human cells. Science, 279(5349), 349-352, DOI: 10.1126/science.279.5349.349.

Kamal, S., Junaid, M., Ejaz, A., Bibi, I., Akash, M.S.H. and Rehman, K., 2020. The secrets of telomerase: retrospective analysis and future prospects. Life Sciences, 257, DOI: 10.1016/j.lfs.2020.118115.

Babizhayev, M. and Yegorov, Y., 2015. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase. Journal of Biomedical Materials Research Part A, 103(12), 3993-4023.

Berei, J., Eckburg, A., Miliavski, E., Anderson, A., Miller, R., Dein, J., Giuffre, A., Tang, D., Deb, S., Racherla, K., Patel, M., Vela, M. and Puri, N., 2020. Potential telomere-related pharmacological targets. Current Topics in Medicinal Chemistry, 20(6), 458-484.

Trivedi, M. and Jana, S., 2019 . Evaluation of anti-aging activity of the biofield energy treated novel test formulation using sirt1 and telomerase activity in in vitro model. Journal of Aging Research and Healthcare, 2(4), 21-29.

Jäger, K. and Walter, M., 2016. Therapeutic targeting of telomerase. Genes, 7(7), DOI: 10.3390/genes7070039.

Tsoukalas, D., Fragkiadaki, P., Docea, A., Alegakis, A., Sarandi, E., Thanasoula, M., Spandidos, D., Tsatsakis, A., Razgonova, M. and Calina, D., 2019. Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Molecular Medicine Reports, 20(4), 3701-3708.

Hernandez-Sanchez, W., Huang, W., Plucinsky, B., Garcia-Vazquez, N., Robinson, N.J., Schiemann, W.P., Berdis, A.J., Skordalakes, E. and Taylor, D.J., 2019. A non-natural nucleotide uses a specific pocket to selectively inhibit telomerase activity. PLoS Biology, 17(4), DOI: 10.1371/journal.pbio.3000204.

Jelodari, S., Sadrabadi, A.E., Zarei, F., Jahangir, S., Azami, M., Sheykhhasan, M. and Hosseini, S., 2022. New insights into cartilage tissue engineering: improvement of tissue-scaffold integration to enhance cartilage regeneration. BioMed Research International, 2022, DOI: 10.1155/2022/7638245.

Banerjee, A., Jain, S.M., Abrar, S.S., Kumar, M.M., Mathew, C. and Pathak, S., 2020. Sources, isolation strategies and therapeutic outcome of exosomes at a glance. Regenerative Medicine, 15(12), 2361-2378.

Francke, S., Orosz, C.G., Hsu, J. and Mathes, L.E., 2002. Immunomodulatory effect of zidovudine (ZDV) on cytotoxic T lymphocytes previously exposed to ZDV. Antimicrobial Agents and Chemotherapy, 46(9), 2865-2871, DOI: 10.1128/AAC.46.9.2865-2871.2002.

Cimino-Reale, G., Zaffaroni, N. and Folini, M., 2017. Emerging role of g-quadruplex DNA as target in anticancer therapy. Current Pharmaceutical Design, 22(44), 6612-6624.

Paudel, B.P., Moye, A.L., Abou Assi, H.A., El-Khoury, R., Cohen, S.B., Holien, J.K., Birrento, M.L., Samosorn, S., Intharapichai, K., Tomlinson, C.G., Teulade-Fichou, M-P., González, C., Beck, J.L., Damha, M.J., van Oijen, A.M. and Bryan, T.M., 2020. A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution. eLife, 9, DOI: 10.7554/eLife.56428.

Kosiol, N., Juranek, S., Brossart, P., Heine, A. and Paeschke, K., 2021. G-quadruplexes: a promising target for cancer therapy. Molecular Cancer, 20(1).

Cano, M.I., Dungan, J.M., Agabian, N. and Blackburn, E.H., 1999. Telomerase in kinetoplastid parasitic protozoa. Proceedings of the National Academy of Sciences of the United States of America, 96(7), 3616-3621, DOI: 10.1073/pnas.96.7.3616.

Bae, J.S., Kim, Y., Jeon, S., Kim, S.H., Kim, T.J., Lee, S., Kim, M.-H., Lim, D.J., Lee, Y.S. and Jung, C.K., 2016. Clinical utility of TERT promoter mutations and ALK rearrangement in thyroid cancer patients with a high prevalence of the BRAF V600E mutation. Diagnostic Pathology, 11(1), DOI: 10.1186/s13000-016-0458-6.

Khaw, A., Hande, M., Kalthur, G. and Hande, M., 2013. Curcumin inhibits telomerase and induces telomere shortening and apoptosis in brain tumour cells. Journal of Cellular Biochemistry, 114(6), 1257-1270.

Marotta, F., Thandavan, S., Pathak, S., Sriramulu, S., Jothimani, G., Gunasekaran, D., Markandeyan, D. and Banerjee, A., 2021.Vitagenic effect of specific bioactive fractions of rhodiola with Trachurus sp. extract against oxidative stress-induced aging in human amnion derived epithelial cell line: in view of a novel senolytic. Current Aging Science, 14(2), 139-153.

Lee, J. and Chung, I., 2010. Curcumin inhibits nuclear localization of telomerase by dissociating the Hsp90 co-chaperone p23 from hTERT. Cancer Letters, 290(1), 76-86.

Phatak, P. and Burger, A.M., 2007. Telomerase and its potential for therapeutic intervention. British Journal of Pharmacology, 152(7), 1003-1011.

Daniel, M. and Tollefsbol, T., 2015. Epigenetic linkage of aging, cancer and nutrition. Journal of Experimental Biology, 218(1), 59-70.

Ju, Z. and Rudolph, K., 2006. Telomeres and telomerase in cancer stem cells. European Journal of Cancer, 42(9), 1197-1203.

Hafezi, F. and Bercoff, D.P., 2020. The solo play of TERT promoter mutations. Cells, 9(3), DOI: 10.3390/cells9030749.

Palm, W. and de Lange, T., 2008. How shelterin protects mammalian telomeres. Annual Review of Genetics, 42(1), 301-334.

Zhang, X., Lou, X. and Xia, F., 2017. Advances in the detection of telomerase activity using isothermal amplification. Theranostics, 7(7), 1847-1862.

Lai, T.-P., Wright, W.E. and Shay, J.W., 2018. Comparison of telomere length measurement methods. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), DOI: 10.1098/rstb.2016.0451.

Tang, F., Liu, S., Li, Q., Yuan, J., Li, L., Wang, Y., Yuan, B. and Feng, Y., 2019. Location analysis of 8-oxo-7,8-dihydroguanine in DNA by polymerase-mediated differential coding. Chemical Science, 10(15), 4272-4281.

Patil, S., Albogami, S., Hosmani, J., Mujoo, S., Kamil, M.A., Mansour, M.A., Abdul, H.N., Bhandi, S. and Ahmed, S.S.S.J., 2022. Artificial intelligence in the diagnosis of oral diseases: applications and pitfalls. Diagnostics, 12(5), DOI: 10.3390/diagnostics12051029.

Girigoswami, A., Yassine, W., Sharmiladevi, P., Haribabu, V. and Girigoswami, K., 2018. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Scientific Reports, 8(1), DOI: 10.1038/s41598-018-34843-4.